DOI QR코드

DOI QR Code

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence

초분광수심법 기반 대하천 합류부 하상측정 성능 평가

  • Kim, Dongsu (Department of Civil & Environmental Engineering, Dankook University) ;
  • Seo, Youngcheol (Department of Civil & Environmental Engineering, Dankook University) ;
  • You, Hojun (K-water Research Institute) ;
  • Gwon, Yeonghwa (Department of Civil & Environmental Engineering, Dankook University)
  • 김동수 (단국대학교 토목환경공학과) ;
  • 서영철 (단국대학교 토목환경공학과) ;
  • 유호준 (K-Water 연구원) ;
  • 권영화 (단국대학교 토목환경공학과)
  • Received : 2023.01.04
  • Accepted : 2023.02.09
  • Published : 2023.03.31

Abstract

Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

국내 대하천은 2010년 대규모 정비사업 이후 자연적 안정화를 위한 추가 재퇴적 및 침식이 진행 중에 있어 정밀 하상 모니터링이 요구되고 있다. 초분광수심법은 저수심의 고해상도 하천 수심측정 측면에서 종래의 접촉식 수심측정 기법을 대체하거나 보완할 수 있는 방법으로 각광을 받기 시작하였다. 본 연구는 초분광수심법에서 대표적인 최적밴드비기법을 소개하고 국내 대하천인 낙동강과 황강 합류부에서 평수기 전형적인 탁도조건에서 초분광수심법을 적용하여 수심맵을 산정하여 국내 하천으로의 적용성을 평가하였다. 이를 위해 수심영역별 최적밴드비기법으로 도출되는 상관도와 평균제곱근오차를 적용하여 최대측정가능수심을 산정하였고 최대추정가능수심 이상은 관계식 구축 시와 수심맵 산정 시 제외시켰다. 그리고 수심과 최적밴드비 관계(d-X)에 비선형성을 검토하여 적용하였다. 국내 대하천인 낙동강-황강 합류부에 적용한 결과는 다음과 같다. 첫째, 초분광수심법은 주로 저수심부에서 정밀한 수심맵을 효율적으로 산정할 수 있음을 보여주었고 최대측정가능수심은 통상적 탁도에서 낙동강의 경우 2.5 m로 나타났고, 탁도가 높은 지류의 경우 1.25 m로 나타났다. 둘째, 최대측정가능수심은 초분광수심법 하상 도출 시 다양한 시나리오의 배제수심을 고려하여 산정 및 적용되어야 하고, 이때 최적밴드비기법 적용 시 평균제곱근오차가 기존의 상관도 방식에 비해 최대측정가능수심 산정에 우수하였다. 셋째, 황강 합류부의 탁도가 높아 측정가능수심이 인근 낙동강에 비해 절반으로 낮아져 초분광수심법은 탁도가 높은 환경일 경우 한계가 있음을 확인하였다.

Keywords

References

  1. Alvarez, L.V., Schmeeckle, M.W., and Grams, P.E. (2017). "A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river." Journal of Geophysical Research: Earth Surface, Vol. 122, pp. 25-49, doi: 10.1002/2016JF003895.
  2. Benjankar, R., Tonina, D., McKean, J.A., Sohrabi, M.M., Chen, Q., and Vidergar, D. (2018). "Dam operations may improve aquatic habitat and offset negative effects of climate change." Journal of Environmental Management, Vol. 213, pp. 126-134. https://doi.org/10.1016/j.jenvman.2018.02.066
  3. Brasington, J., Rumsby, B.T., and McVey, R. (2000). "Monitoring and modelling morphological change in braided river systems using the global positioning system." Earth Surface Processes and Landforms, Vol. 25, pp. 973-990. https://doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
  4. Cha, Y.J., Shim, M., and Kim, S.K. (2011). "The four major rivers restoration project." UN-Water International Conference, UN WATER, Aragoza, Spain.
  5. Conner, J.T., and Tonina, D. (2014). "Effect of cross-section interpolated bathymetry on 2D hydrodynamic model results in a large river." Earth Surface Process and Landforms, Vol. 39, pp. 463-475. https://doi.org/10.1002/esp.3458
  6. Corning (2017). Corning mircro HSI 410 SHARK: Integrated, coherent, airborne hyperspectral imaging system. accssed 17 September, 2022, <https://www.corning.com/microsites/coc/oem/documents/hyperspectral-imaging/Corning-MicroHSI-410-SHARK-Brochure.pdf>.
  7. Dierssen, H.M., Zimmerman, R.C., Lathers, R.A., Downes, T.V., and Davis, C.O. (2003). "Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery." Limnology and Oceanography, Vol. 48, No. 1, pp. 444-455. https://doi.org/10.4319/lo.2003.48.1_part_2.0444
  8. Fausch, K.D., Torgersen, C.E., Baxter, C.V., and Li, H.W. (2002). "Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes: A continuous view of the river is needed to understand how processes interacting among scales set the context for stream fishes and their habitat." BioScience, Vol. 52, No. 6, pp. 483-498. https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2
  9. Flener, C., Wang, Y., Laamanen, L., Kasvi, E., Vesakoski, J., and Alho, P. (2015). "Empirical modeling of spatial 3D flow characteristics using a remote-controlled ADCP system: Monitoring a spring flood." Water, Vol. 7, No. 1, pp. 217-247. https://doi.org/10.3390/w7010217
  10. Fonstad, M.A., and Marcus, W.A. (2010). "High resolution, basin extent observations and implications for understanding river form and process." Earth Surface Processes and Landforms, Vol. 35, No. 6, pp. 680-698. https://doi.org/10.1002/esp.1969
  11. Guerrero, M., and Lamberti, A. (2011). "Flow field and morphology mapping using ADCP and multibeam techniques: Survey in the Po River." Journal of Hydraulic Engineering, Vol. 137, No. 12, pp. 1576-1587. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000464
  12. Ji, U., Jang, E.K., and Kim, W. (2015). "Long-term bed change analysis and equilibrium bed elevation prediction after weir construction in Nakdong River." Journal of the Korea AcademiaIndustrial Cooperation Society, Vol. 16, No. 10, pp. 7089-7097. https://doi.org/10.5762/KAIS.2015.16.10.7089
  13. Jun, K.S., and Kim, J.S. (2011). "The four major rivers restoration project: Impacts on river flows." Journal of Civil Engineering, KSCE, Vol. 15, No. 2, pp. 217-224. https://doi.org/10.1007/s12205-011-0002-x
  14. Kasvi, E., Laamanen, L., Lotsari, E., and Alho, P. (2017). "Flow patterns and morphological changes in a sandy meander bend during a flood - spatially and temporally intensive ADCP measurement approach." Water, Vol. 9, No. 2, 106.
  15. Kasvi, E., Salmela, J., Lotsari, E., Kumpula, T., and Lane, S.N., (2019). "Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers." Geomorphology, Vol. 333, pp. 180-197. https://doi.org/10.1016/j.geomorph.2019.02.017
  16. Kim, S.J., and Kim, C.S. (2020). "Analysis of bed changes of the Nakdong River with opening the weir gate." Ecology and Resilient Infrastructure, Vol. 7, No. 4, pp. 353-365.
  17. Koljonen, S., Huusko, A., Maki-Petays, A., Louhi, P., and Muotka, T. (2012). "Assessing habitat suitability for juvenile atlantic salmon in relation to in-stream restoration and discharge variability." Resoration Ecology, Vol. 21, No. 3, pp. 344-352.
  18. Lah, T.J., Park, Y., and Cho, Y.J. (2015). "The four major rivers restoration project of South Korea: An assessment of its process, program, and political dimensions." The Journal of Environmental & Development, Vol. 24, No. 4, pp. 375-394.
  19. Lee, C.J., Kim, D.G., Hwang, S.Y., Kim, Y.J., Jeong, S.J., Kim, S.N., and Cho, H.J. (2019a). "Dataset of long-term investigation on change in hydrology, channel morphology, landscape and vegetation along the Naeseong Stream (I)." Ecology and Resilient Infrastructure, Vol. 6, No. 1, pp. 23-33.
  20. Lee, C.J., Kim, D.G., Hwang, S.Y., Kim, Y.J., Jeong, S.J., Kim, S.N., and Cho, H.J. (2019b). "Dataset of long-term investigation on change in hydrology, channel morphology, landscape and vegetation along the Naeseong Stream (II)." Ecology and Resilient Infrastructure, Vol. 6, No. 1, pp. 34-48.
  21. Legleiter, C., and Fosness, R.L. (2019a). "Defining the limits of spectrally based bathymetric mapping on a large river." Remote Sensing, Vol. 11, No. 6, 665.
  22. Legleiter, C., Overstreet, B., and Kinzel, P. (2018). "Sampling strategies to improve passive optical remote sensing of river bathymetry." Remote Sensing, Vol. 10, No. 6, 935.
  23. Legleiter, C.J. (2014). "A geostatistical framework for quantifying the reach-scale morphology: 1. Variogram models, related metrics, spatial sturcture of river and relation to channel form." Geomorphology, Vol. 427, No. 205, pp. 65-84. https://doi.org/10.1016/j.geomorph.2012.01.016
  24. Legleiter, C.J., and Harrison, L.R. (2019b). "Remote sensing of river bathymetry: Evaluating a range of sensors, platforms, and algorithms on the upper sacramento river, California, USA." Water Resources Research, Vol. 55, No. 3, pp. 2142-2169. https://doi.org/10.1029/2018WR023586
  25. Legleiter, C.J., Roberts, D.A., and Lawrence, R.L. (2009). "Spectrally based remote sensing of river bathymetry" Earth Surface Processes and Landforms, Vol. 34, No. 8, pp. 1039-1059. https://doi.org/10.1002/esp.1787
  26. Lyzenga, D.R. (1978). "Passive remote sensing techniques for mapping water depth and bottom features." Applied Optics, Vol. 17, No. 3, pp. 379-383. doi: 10.1364/ao.17.000379.
  27. Lyzenga, D.R. (1985). "Shallow-water bathymetry using combined lidar and passive multispectral scanner data." International Jouranl of Remote Sensing, Vol. 6, No. 1, pp. 115-125. https://doi.org/10.1080/01431168508948428
  28. Maritorena, S., Morel, A., and Gentili, B. (1994). "Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo." Limnology And Oceanography, Vol. 39, No. 7, pp. 1867-1872. https://doi.org/10.4319/lo.1994.39.7.1689
  29. McKean, J., Tonina, D., Bohn, C., and Wright, C.W. (2014). "Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model." Journal of Geophysical Research: Earth Surface, Vol. 119, No. 3, pp. 644-664. doi: 10.1002/2013JF002897.
  30. Mertes, L.A. (2002). "Remote sensing of riverline landscapes." Freshwater Biology, Vol. 47, No. 4, pp. 799-816. https://doi.org/10.1046/j.1365-2427.2002.00909.x
  31. Mobley, C.D. (1999). "Estimation of the remote-sensing reflectance from above-surface measurements." Applied Optics, Vol. 38, No. 36, pp. 7442-7455. https://doi.org/10.1364/AO.38.007442
  32. Mobley, C.D., and Sundman, L.K. (2001). Hydrolight 4.2 technical documentation. Sequoia Scentific Inc., Washington, D.C., U.S.
  33. Muste, M., Yu, K., Fujita, I., and Ettema, R. (2009). "Two-phase flow insights into open-channel flows with suspended particles of different densities." Journal of Environmental Fluid Mechanics, Vol. 9, No. 2, pp. 161-186. doi: 10.1007/s10652-008-9102-7.
  34. Pan, Z., Glennie, C., Legleiter, C., and Overstreet, B. (2015). "Estimation of water depths and turbidity from hyperspectral imagery using support vector regression." Geoscience and Remote Sensing, Vol. 12, No. 10, pp. 2165-2169.
  35. Parsapour-Moghaddam, P., Brennan, C., Rennie, C.D., Elvidge, C.K., and Cooke, S. (2019). "Impacts of channel morphodynamics on fish habitat utilization." Environmental Management, Vol. 64, pp. 272-286. https://doi.org/10.1007/s00267-019-01197-0
  36. Philpot, W.D. (1989). "Bathymetirc mapping with passive multispectral imagery." Applied Optics, Vol. 28, No. 8, pp. 1569-1578. https://doi.org/10.1364/AO.28.001569
  37. River Act (2016). "River Act." Ministry of Environment, Revised 2016.7.19. Accessed 2 March 2023, <https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%ED%95%98%EC%B2%9C%EB%B2%95>.
  38. Shintani, C., and Fonstad, M. (2017). "Comparing remote-sensing techniques collecting bathymetric data from a gravel-bed river." International Journal of Remote Sensing, Vol. 38, No. 8-10, pp. 2883-2902. https://doi.org/10.1080/01431161.2017.1280636
  39. Stumpf, R.P., Holderied, K., and Sinclair, M. (2003). "Determination of water depth with high-resolution satellite imagery over variable bottom types." Limnology and Oceanography, Vol. 48, No. 1, pp. 547-556. doi: 10.4319/lo.2003.48.1_part_2.0547.
  40. Tonina, D., McKean, J.A., Benjankar, R.M., Wright, C.W., Goode, J.R., Chen, Q., Reeder, W.J., Carmichael, R.A., and Edmondson, M.R. (2019). "Mapping river bathymetries: Evaluating topobathymetric LiDAR survey." Earth Surface Processes and Landforms, Vol. 44, pp. 507-520. https://doi.org/10.1002/esp.4513
  41. Westaway, R.M., Lane, S.N., and Hicks, D.M. (2003). "Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis." International Journal of Remote Sensing, Vol. 24, pp. 795-815. https://doi.org/10.1080/01431160110113070
  42. Yorke, T.H., and Oberg, K.A. (2002). "Measuring river velocity and discharge with acoustic Doppler profilers." Flow Measurement and Instrumentation, Vol 13, pp. 191-195. https://doi.org/10.1016/S0955-5986(02)00051-1
  43. You, H., and Kim, D. (2021). "Development of an image registration technique for fluvial hyperspectral imagery using an optical flow algorithm." Sensors, Vol. 21, No. 7, 2407.
  44. You, H.J. (2018). Development of riverine bathymetry survey technique using drone-based hyperspectral image. Ph. D. Dissertation, Dankook University.
  45. You, H.J., Kim, D.S., and Shin, H.S. (2020). "Evaluation of depth measurement method based on spectral characteristics using hyperspectrometer." Korean Journal of Remote Sensing, Vol. 36, No. 2-1, pp. 103-119. https://doi.org/10.7780/KJRS.2020.36.2.1.2
  46. Zhao, J., Zhang, X., Zhang, H., and Zhou, F. (2017). "Shallow water measurements using a single green laser corrected by building a near water surface penetration model." Remote Sensing, Vol. 9, No. 5, 426.