DOI QR코드

DOI QR Code

Evaluation of Road and Traffic Information Use Efficiency on Changes in LDM-based Electronic Horizon through Microscopic Simulation Model

미시적 교통 시뮬레이션을 활용한 LDM 기반 도로·교통정보 활성화 구간 변화에 따른 정보 이용 효율성 평가

  • Received : 2022.12.07
  • Accepted : 2022.12.18
  • Published : 2023.04.01

Abstract

Since there is a limit to the physically visible horizon that sensors for autonomous driving can perceive, complementary utilization of digital map data such as a Local Dynamic Map (LDM) along the probable route of an Autonomous Vehicle (AV) is proposed for safe and efficient driving. Although the amount of digital map data may be insignificant compared to the amount of information collected from the sensors of an AV, efficient management of map data is inevitable for the efficient information processing of AVs. The objective of this study is to analyze the efficiency of information use and information processing time of AV according to the expansion of the active section of LDM-based static road and traffic information. To carry out this objective, a microscopic simulator model, VISSIM and VISSIM COM, was employed, and an area of about 9 km × 13 km was selected in the Busan Metropolitan Area, which includes heterogeneous traffic flows (i.e., uninterrupted and interrupted flows) as well as various road geometries. In addition, the LDM information used in AVs refers to the real high-definition map (HDM) built on the basis of ISO 22726-1. As a result of the analysis, as the electronic horizon area increases, while short links are intensively recognized on interrupted urban roads and the sum of link lengths increases as well, the number of recognized links is relatively small on uninterrupted traffic road but the sum of link lengths is large due to a small number of long links. Therefore, this study showed that an efficient range of electronic horizon for HDM data collection, processing, and management are set as 600 m on interrupted urban roads considering the 12 links corresponding to three downstream intersections and 700 m on uninterrupted traffic road associated with the 10 km sum of link lengths, respectively.

자율주행을 위한 센서들이 인지할 수 있는 공간적 영역은 한계가 존재하기 때문에, 안전하고 효율적인 자율주행을 위해 LDM (Local Dynamic Map)과 같은 디지털 도로·교통정보의 보완적 활용을 제안하고 있다. 비록 자율주행 차량의 센서들로부터 수집되는 정보량에 비해 이러한 도로·교통정보의 양은 상대적으로 미미할 수 있지만, 자율주행 자동차(Autonomous Vehicle, AV)의 효율적 정보처리를 위해 도로·교통 정보의 효율적 관리는 불가피하다. 본 연구는 LDM 기반 정적 도로·교통정보의 활성화 구간(electronic horizon 혹은 e-horizon)의 확장에 따른 자율주행 차량의 정보 이용과 정보처리 시간의 효율성을 분석하고자 하였다. 분석을 위해 미시적 시뮬레이션 모델인 VISSIM과 VISSIMCOM을 적용하였다. 시뮬레이션을 위해 이질적 교통류(연속류, 단속류)는 물론 다양한 도로 기하구조가 포함된 부산광역시 주요 구들을 포함한 약 9 km × 13 km 영역을 선정하였다. 또한, 자율주행 차량에서 활용되는 LDM 정보는 ISO 22726-1 기반으로 구축된 자율주행 전용 정밀 지도(High-definition Map, HDM)를 참고하였다. 분석 결과, e-horizon 영역이 증가함에 따라 단속류 도로에서 짧은 링크들이 집중적으로 인식되고 링크 길이의 합이 증가하는 반면, 연속류 도로에서는 인식되는 링크의 개수는 상대적으로 적지만 소수의 긴 링크들이 인식됨에 따라 링크 길이의 합이 크게 나타나고 있다. 따라서, 본 연구는 저속의 단속류 도로에서는 12개 링크를 기준으로, 그리고 고속의 연속류 도로에서는 링크 길이의 합 10 km를 기준으로 HDM 데이터의 수집, 가공, 처리를 위한 e-horizon의 영역은 각각 600 m와 700 m가 가장 적절한 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 크라우드 소싱 기반의 디지털 도로·교통 인프라 융합 플랫폼 기술 개발 과제(KAIA22AMDP-C161924-02)의 지원을 받아 수행되었음.

References

  1. Asadi, F. E., Anwar, A. K. and Miles, J. C. (2019). "Investigating the potential transportation Impacts of Connected and Autonomous Vehicles." The Proceedings of 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, pp. 1-6.
  2. Association for Standardization of Automation and Measuring System (ASAM) (2022). ASAM OpenDRIVE, Available at: https://www.asam.net/standards/detail/opendrive/ (Accessed: November 28, 2022).
  3. Beza, A. D., Zefreh, M. M., Torok, A. and Mekonnen, A. A. (2022). "How PTV vissim has been calibrated for the simulation of automated vehicles in literature?." Advances in Civil Engineering, Vol. 2022, pp. 1-18. https://doi.org/10.1155/2022/2548175
  4. Eckerle, W., Sujan, V. and Salemme, G. (2017). Future challenges for engine manufacturers in view of future emissions legislation, SAE Technical Paper 2017-01-1923.
  5. El-Hansali, Y., Farrag, S., Yasar, A., Shakshuki, E. and Al-Abri, K. (2021). "Using surrogate measures to evaluate the safety of autonomous vehicles." The Proceedings of The 18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), Leuven, Belgium, pp. 151-159.
  6. Gazder, U., Alhalabi, K. and Alazzawi, O. (2020). "Calibration of autonomous vehicles in PTV VISSIM." The Proceedings of 3rd Smart Cities Symposium (SCS 2020), Online Conference, pp. 39-42.
  7. Huber, T. and Grossner, T. (2017). "Future CO2 legislation and innovations to reduce TCO - using continental innovation truck as an example - evaluation of photovoltaic system and coasting technology." In Nutzfahrzeuge 2017 - Commercial Vehicles 2017, Truck, Bus, Van, Trailer, 1ed.; GmbH, V. D. I. W., Ed. VDI Verlag: Dusseldorf, pp. 79-102.
  8. International Organization for Standardization (ISO) (2019). Intelligent transport systems - dynamic data and map database specification for connected and automated driving system applications - part 1: architecture and logical data model for harmonization of static map data, ISO/AWI TS 22726-1.
  9. Kang, C. M., Chung, Y. S. and Park, J. H. (2022). "A framework for calculating the spatiotemporal activation section of LDM-Based autonomous driving information." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 42, No. 4, pp. 519-526 (in Korean).
  10. Lee, M. H., Jang, I. S. and Kim, M. S. (2021). "A study on data model conversion method for the application of autonomous driving of various kinds of HD map." Journal of Cadastre & Land Informatix, Vol. 51, No. 1, pp. 39-51 (in Korean).
  11. Malibari, A., Higatani, A. and Saleh, W. (2022). "Assessing the impacts of autonomous vehicles on road congestion using microsimulation." Sensors, Vol. 2022, No. 22, pp. 1-15. https://doi.org/10.3390/s22124407
  12. Milton, G., Fiquet, F., Wijesinghem, A., Noble, A. and Fussey, P. (2019). "Efficiency improvements for commercial vehicles through dynamic electronic horizon." In: Siebenpfeiffer, W. (eds) Heavy-Duty-, On- und Off-Highway-Motoren 2018. Proceedings, Springer Vieweg, Wiesbaden.
  13. National Geographic Information Institute (NGII) (2022). High definition road map, Available at: https://www.ngii.go.kr/eng/content.do?sq=124 (Accessed: November 28, 2022).
  14. Navigation Data Standard (NDS) (2022). Open lane model, Available at: https://www.openlanemodel.org/ (Accessed: November 28, 2022).
  15. Patel, A. D. (2019). Estimating the effect of connected and autonomous vehicles (CAVs) on capacity and level of service at freeway merge segments, MS Thesis, Civil Engineering at the University of Kansas, Lawrence, Kansas, USA, pp. 1-67.
  16. Varnhagen, D. (2017). Electronic horizon: A map as a sensor and predictive control, SAE Technical Paper 2017-01-1945.
  17. Zeidler, V., Buck, S. H., Kautzsch, L. and Vortisch, P. (2019). "Simulation of autonomous vehicles based on wiedemann's car following model in PTV vissim." The Proceedings of Transportation Research Board 98th Annual Meeting, Washington, DC, USA, pp. 1-14.