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CONJUGACY CLASSIFICATION OF n-DIMENSIONAL

MÖBIUS GROUP

Binlin Dai and Zekun Li

Abstract. In this paper, we study the n-dimensional Möbius transfor-

mation. We obtain several conjugacy invariants and give a conjugacy
classification for n-dimensional Möbius transformation.

1. Introduction

Throughout this paper, we will adopt the same notations and definitions
as in [1, 8, 10, 11] such as, complex Möbius transformations, PSL(2,C), the

Möbius group M(Rn
), the Clifford matrix group SL(2,Γn), the Clifford algebra

Cn and so on. For example, complex Möbius transformations: Any 2 × 2
matrix A in GL(2,C) induces complex Möbius transformations g by the formula
A → gA = g, where A =

(
a b
c d

)
, gA = az+b

cz+d ; PSL(2,C): The collection of all
complex Möbius transformations for which ad − bc takes the value 1 forms a
group which can be identified with PSL(2,C). In particular, a member f of
PSL(2,C) is simple if it is conjugate in PSL(2,C) to an element of PSL(2,R).
The map f is k-simple if it may be expressed as the composite of k simple
transformations but no fewer. For more details, see [1, 4–6,8–10,12,13] etc.

It is well known that to study the conjugacy classification of Möbius trans-
formation is very important and there has been an active research in this area.
In 1983, Beardon [3] proved that trace2(g) (we often abbreviate trace2(g) to
tr2(g) or τ2g ) is invariant under any conjugation g 7→ hgh−1 and he established

the conjugacy classification of PSL(2,C). Let g ∈ PSL(2,C), if τ2g ≥ 0, then

g is 1-simple and if tr2(g) = 4, then g is parabolic; if tr2(g) ∈ [0, 4), then g
is elliptic; if tr2(g) ∈ (4,∞), then g is hyperbolic. If tr2(g) is either not real
or is negative, then g is 2-simple and loxodromic. In 2004, Foreman [7] used

the quaternionic formalism of Möbius transformations on R̂4 to derive conju-
gacy invariants on SL(2,H). For a matrix A =

(
a b
c d

)
∈ SL(2,H), we define
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γA = |a|2 + |d|2 + 4Re(a)Re(d) − 2Re(bc) and δA = Re(τA). Foreman proved
that γA and δA on SL(2,H) are conjugate invariant. In 2008, by Foreman’s con-
jugacy invariants, Parker [11] had the following conjugacy classification which
was more general than Beardon’s result. Let g ∈ PSL(2,H). Case (a) if τg ∈ R,
then g is 1-simple and if δ2g ∈ [0, 4), then g is elliptic; if δ2g = 4, then g is para-

bolic; if δ2g ∈ (4,∞), then g is loxodromic. Case (b) if βg = δg and τg /∈ R, then
g is 2-simple if γg − δ2g < 2, then g is elliptic; if γg − δ2g = 2, then g is parabolic

and if γg − δ2g > 2, then g is loxodromic. Case (c) if βg ̸= δg then g is 3-simple
and loxodromic.

As the first main aim of this paper, we will study the conjugacy invariants
further and prove.

Theorem 1.1. Given A ∈ SL(2,Γn), c ∈ V n. Then γA is preserved under con-
jugation in SL(2,Γn). If τA is real, then it is also preserved under conjugation
in SL(2,Γn).

Following Theorem 1.1, we have:

Corollary 1.2. Let f ∈ M(Rn
) with c ∈ V n \ {0}. Then f is conjugate to a

real Möbius transformation if and only if τf ∈ R.
As the second main aim of this paper, by using Theorem 1.1, we will discuss

the conjugacy classification of n-dimensional Möbius transformation.

Theorem 1.3. Let f be an n-dimensional Möbius transformation with c ∈
V n \ {0}.

(a) If τ ∈ R, then f is 1-simple
(i) If 0 ≤ τ2 < 4, then f is elliptic;
(ii) If τ2 = 4, then f is parabolic;
(iii) If τ2 > 4, then f is hyperbolic.

(b) If τ /∈ R, then f is not parabolic.
(i) If γ − δ2 > 2, then f is loxodromic and f is 2-simple or 3-simple;
(ii) If γ − δ2 = 2, then f is elliptic and f is 2-simple;
(iii) If γ − δ2 < 2, then f is fixed point free.

Remark 1.4. Theorem 1.1 is a generalization of Foreman’s conjugacy invariants
γ and δ in [7].

Remark 1.5. Corollary 1.1 is a generalization of Theorem 1.2 in [11].

Remark 1.6. Theorem 1.2 is a generalization of Parker’s conjugacy classification
in [11] into the case of SL(2,H).

2. Preliminaries

The Clifford algebra Cn shall be the associative algebra over the reals gen-
erated by elements i1, i2, . . . , in−1 subject to the relations i2h = −1 and ihit =
−itih, i

2
t = −1. Every q ∈ Cn has a unique representation of the form

q =
∑

qII, qI ∈ R and I = iv1iv2 · · · ivp with 0 < v1 < · · · < vp < n.
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Clifford numbers of the from q = q0+q1i1+ · · ·+qn−1in−1 are called vectors.
Obviously, when n = 3, C3 = H. The Clifford group Γn consists of all q ∈ Cn
which can be written an products of non-zero vectors in V n. We denote this
real vector space by V n and it is isomorphic to Rn as a vector space. The
algebra a ∈ Cn has three important involutions:

(1) a′ = a0 +
∑

apI
′
p, I

′
p = (−i1)(−i2) · · · (−ip) = (−1)pIp;

(2) a∗ = a0 +
∑

apI
∗
p , I

∗
p = ipip−1 · · · i1 = (−1)

p(p−1)
2 Ip;

(3) a = a0 +
∑

avIv, Iv = (−ip)(−ip−1) · · · (−i1) = (−1)
p(p+1)

2 Ip.

It is obvious that (ab)′ = a′b′, (ab)∗ = b∗a∗, ab = b̄ā. If a, b ∈ Γn, then

|ab| = |a| |b|, aa = aa = |a|2.
From Ahlfors [2] we have the following general definition:

Definition 2.1. The matrix
(
a b
c d

)
belongs to the group SL(2,Γn) if

(i) a, b, c, d ∈ Γn ∪ {0} ;
(ii) ad∗ − bc∗ = 1;
(iii) ab∗, cd∗, c∗a, d∗b ∈ V n.

An n-dimensional Möbius transformation f is an invertible map of V
n
=

V n∪{∞} of the form f(x) = (ax+b)(cx+d)−1 which is induced by the formula
A → fA = f , where A =

(
a b
c d

)
∈ SL(2,Γn). The map A 7→ f from SL(2,Γn) to

the Möbius group M(Rn
) is a surjective homomorphism. In future, whenever

we refer to A, f or an ‘n-dimensional Möbius transformation’, we refer to the
quantities described above.

A real Möbius transformation in PSL(2,Γn) is a member of PSL(2,Γn) with
real coefficients. A member f of PSL(2,Γn) is simple if it is conjugate in
PSL(2,Γn) to an element of PSL(2,R). The map f is k-simple if it may be
expressed as the composite of k simple transformations but no fewer. The group
PSL(2,Γn) contains PSL(2,R) as subgroup and we further have the following
lemma.

Lemma 2.2. If A ∈ SL(2,Γn), c ∈ V n \ {0}, then A is less than 4-simple.

Proof. A has the factorization(
a b
c d

)
=

(
1 ac−1

0 1

)(
c∗−1 0
0 c

)(
0 −1
1 0

)(
1 c−1d
0 1

)
.

Since (
1 0
0 β

)(
r β
0 r−1

)(
1 0
0 β−1

)
=

(
r 1
0 r−1

)
,

then
(

r β

0 r−1

)
is 1-simple, where β ∈ V n, r ∈ R \ {0}.

Suppose that t ∈ V n and |t| = 1. There exist real numbers x and y and
purely imaginary unit vector µ such that t = x+ µy, where µ = µ1i1 + µ2i2 +
· · ·+ µn−1in−1, |µ| = 1.
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From the matrix equation(
µ 1
1 µ

)(
x+ µy 0

0 x− µy

)(
µ 1
1 µ

)−1

=

(
x −y
y x

)
we see that

(
t 0
0 t

)
is 1-simple.

Further, we have(
a b
c d

)
=

(
|c|−1

ac−1

0 |c|

)(
t 0
0 t

)(
0 −1
1 0

)(
1 c−1d
0 1

)
,

where c = |c| t, |t| = 1, t ∈ V n.

From the above discussion, we have
(

|c|−1 ac−1

0 |c|

)
and

(
1 c−1d
0 1

)
are 1-simple,(

t 0
0 t

)
is 1-simple, then A is less than 4-simple. □

3. The proofs of main results

Proof of Theorem 1.1. According to [1], we have SL(2,Γn) is generated by ma-
trices of the from (

1 β
0 1

)
,

(
r 0
0 r−1

)
,

(
0 1
−1 0

)
,

(
λ 0
0 λ′

)
,

where β ∈ V n, r ∈ R, |λ| = 1, λ ∈ Γn. Denote one of these matrices by P . Let
B = PAP−1. It suffices to show that for each choice of P , we have τA = τB
and γA = γB :

In the first case we have(
1 β
0 1

)(
a b
c d

)(
1 β
0 1

)−1

=

(
a+ βc −aβ − βcβ + b+ βd

c d− cβ

)
,

τB = a+ βc+ (d− cβ)∗ = τA,

γB = |a+ βc|2 + |d− cβ|2 + 4Re(a+ βc)Re(d− cβ)

− 2Re[(−aβ − βcβ + b+ βd)c]

= |a|2 + |d|2 + 2 |βc|2 + 2Re(a · βc)− 2Re(d · cβ)
+ 4Re(a)Re(d)− 4Re(a)Re(cβ) + 4Re(βc)Re(d)

− 4Re(βc)Re(cβ) + 2Re(aβc) + 2Re(βcβc)− 2Re(bc)− 2Re(βdc).

Since β, c ∈ V n, then βc = q0 + q1I1 + q2I2. With the third involution, we
have βc = q0 − q1I1 − q2I2. This shows that βc+ βc is real. Then

γB = γA + 2Re(a · βc)− 4Re(a)Re(cβ) + 2Re(aβc) + 2 |βc|2

− 4Re(βc)Re(cβ) + 2Re(βcβc)− 2Re(d · cβ) + 4Re(βc)Re(d)− 2Re(βdc)

= γA + 2Re(a)[Re(βc+ βc)− 2Re(cβ)] + 2Re(βc)[Re(βc+ βc)− 2Re(cβ)]

+ Re(d)[−Re(cβ + cβ) + 2Re(cβ)] = γA.
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In the second case we have(
r 0
0 r−1

)(
a b
c d

)(
r 0
0 r−1

)−1

=

(
a r2b

r−2c d

)
,

τB = a+ d∗ = τA,

γB = |a|2 + |d|2 + 4Re(a)Re(d)− 2Re(r2b · r−2b) = γA.

In the third case we have(
0 1
−1 0

)(
a b
c d

)(
0 1
−1 0

)−1

=

(
d −c
−b a

)
.

Since τA is real, then τA = a+ d∗ = (a+ d∗)∗ = τB ,

γB = |a|2 + |d|2 + 4Re(d)Re(a)− 2Re[(−c) · (−b)] = γA.

In the forth case we have(
λ 0
0 λ′

)(
a b
c d

)(
λ 0
0 λ′

)−1

=

(
λaλ λbλ∗

λ′λc λ′dλ∗

)
.

Since τA is real, then τB = λ(a+ d∗)λ = (a+ d∗)λλ = τA,

γB = |a|2 + |d|2 + 4Re(λaλ)Re(λ′dλ∗)− 2Re(λbλ∗ · λ′cλ) = γA. □

Proof of Corollary 1.1. Let f ∈ M(Rn
) with c ∈ V n \ {0}. If f is conjugate

to a real Möbius transformation, then τf is real, by Theorem 1.1. Conversely,
According to Theorem 5.5 in [5], if τf is real and c ∈ V n \ {0}, then f is
conjugate to a real Möbius transformation. □

Now, we give a classification to the elements of M(Rn
) as follows. In the

proof of Theorem 1.2, we will adopt the following classification [6, 12–14].

Non-trivial element f ∈ M(Rn
) is called

(1) fixed-point-free if it has no fixed points in Rn
and f can be conjugate in

SL (2,Γn) to
(

λ −r2t′

t λ′

)
, |λ| < 1, r ∈ R, t ̸= 0;

(2) loxodromic if it (and its Poincare extension f̃) has two fixed points in

Rn
(and Rn+1

) and f can be conjugate in SL (2,Γn) to
(
λ 0
0 r−1λ′

)
, where r > 0,

r ̸= 1, λ ∈ Γn and |λ| = 1;

(3) parabolic if it has only one fixed point in Rn
and its Poincaré extension

has infinitely many fixed points in Rn
and f can be conjugate in SL (2,Γn) to(

a b
0 a′

)
, where a, b ∈ Γn, |a| = 1, b ̸= 0 and ab = ba′;

(4) elliptic if it has at least two fixed points in Rn+1
and f can be conjugate

in SL (2,Γn) to
(
u 0
0 u′

)
, where u ∈ Γn, |u| = 1 and u /∈ R.

Proof of Theorem 1.2. Case (a), using Theorem 1.1, f is conjugate to a real
Möbius transformation. Then corresponds to the usual classification for real
Möbius transformations.
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Case (b). We first prove that f is not parabolic. Suppose f is parabolic.
Let β = 1

2 (c
−1d+ ac−1) and σ = 1

2 (ac
−1 + c−1d), we have(

1 β
0 1

)(
a b
c d

)(
1 −β
0 1

)
=

(
σc σcσ − c−1

c cσ

)
,

f is parabolic ⇔ f has only one fixed point on M(Rn
) ⇔

(
σc σcσ−c−1

c cσ

)
has only

one fixed point on V n. Suppose that v is the fixed point of
(
σc σcσ−c−1

c cσ

)
. Then

v is the fixed point of
(
σc σcσ−c−1

c cσ

)
⇔ v satisfies the condition c(v + σ)c(v −

σ) = −1 ⇔ v and −v are simultaneously fixed points. So A is parabolic
⇔ v = −v ⇔ σcσ − c−1 = 0 ⇔ (cσ)2 = 1.

Since (cσ)2 + |cσ|2 = (cσ)(cσ+ cσ) = 2, cσ+ cσ is real, then cσ is real. This
is a contradiction since f is conjugate to a real Möbius transformation.

(i) If f is loxodromic, A is conjugate in SL(2,Γn) to
(
rλ 0
0 r−1λ′

)
, where |λ| =

1, r > 0, r ̸= 1, λ ∈ Γn, the map satisfies:

γ − δ2 = r2 + r−2 + [2− (r2 + r−2)]Re2(λ) > 2,

since (
rλ 0
0 r−1λ′

)
=

(
r 0
0 r−1

)(
λ 0
0 λ′

)
.

Let u, v be fixed points of A and we make the specific choice h:

h =

(
1 −u

(u− v)−1 −(u− v)−1v

)
,

hfh−1 =

(
(u− v)(cv + d)(u− v)−1 0

0 cu+ d

)
.

Then

cu+ d = c(u+ c−1d) = r−1λ′, r−1 =
∣∣c(u+ c−1d)

∣∣ , λ′ = λ′
1λ

′
2, λ

′
1, λ

′
2 ∈ V n,(

rλ 0
0 r−1λ′

)
=

(
r 0
0 r−1

)(
λ1 0
0 λ′

1

)(
λ2 0
0 λ′

2

)
.

Using Theorem 2.1, we have f is 2-simple or 3-simple.
(ii) If f is elliptic, f can be conjugate in SL (2,Γn) to

(
u 0
0 u′

)
, where u ∈ Γn,

|u| = 1 and u /∈ R.

γ − δ2 = |u|2 + |u′|2 + 4Re(u)Re(u′)− (Re(u+ u′))2 = 2.

Similar discussions as above, f is conjugate to
(

λ1 0
0 λ′

1

)(
λ2 0
0 λ′

2

)
, then f is 2-

simple.

(iii) If f is fixed point free, f can be conjugate in SL (2,Γn) to
(

λ −r2t′

t λ′

)
,

|λ| < 1, r ∈ R, t ̸= 0.

γ − δ2 = 2(|λ|2 + r2Re(t′t)) < 2. □

Remark 3.1. Similarly, c ∈ V n \ {0} can be replaced by b ∈ V n \ {0}.
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