# RINGS AND MODULES WHICH ARE STABLE UNDER NILPOTENTS OF THEIR INJECTIVE HULLS 

Nguyen Thi Thu Ha


#### Abstract

It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right $R$-module is nilpotentinvariant. We prove that $R \cong R_{1} \times R_{2}$, where $R_{1}, R_{2}$ are rings which satisfy $R_{1}$ is a semi-simple Artinian ring and $R_{2}$ is square-free as a right $R_{2}$-module and all idempotents of $R_{2}$ is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right $R$-modules. Such a module is shown to have isomorphic simple modules $e R$ and $f R$, where $e, f$ are orthogonal primitive idempotents such that $e R f \neq 0$.


## 1. Introduction

Recall that a module $M$ is called automorphism-invariant if it invariant under any automorphism of its injective hull [12] (see also, [7,9,11, 19]). Some properties of automorphism-invariant modules and the structure of rings via the class of automorphism-invariant modules are studied (see [1,5,10,15,16,18]). We notice that if $f$ is a nilpotent endomorphism of $E(M)$ of a module $M$ with $f^{n}=0$ for some $n$, then $1+f$ is an automorphism of $E(M)$, where $E(M)$ denotes the injective hull of the module $M$. So it is easy to see that if $\alpha$ is a nilpotent endomorphism of a module $M$, then $1+\alpha$ is an automorphism of $M$. By this easy fact, a submodule $N$ of $M$ is said to be a nilpotent-invariant submodule of $M$ if $\alpha(N) \leq N$ for all nilpotent elements $\alpha$ of $\operatorname{End}(M)$. A module is called a nilpotent-invariant module (or nil-invariant module) if it is a nilpotent-invariant submodule of its injective hull [8]. All automorphisminvariant modules are nilpotent-invariant but the converse is not true, in general (see [8, Example 2.2]).

The first section deals with some decompositions of nilpotent-invariant modules. We prove that if $M$ is a nilpotent-invariant module, then $M$ has a decomposition $M=X \oplus Y$ such that $X$ is quasi-injective, $Y$ is square-free, $X$

[^0]and $Y$ are relatively injective and orthogonal (Theorem 2.2). Assume that $M$ is a nonsingular nilpotent-invariant module with a decomposition $M=X \oplus Y$ as per-above mentioned theorem. Then for any submodules $U, V$ of $Y$ with $U \cap V=0$, then $\operatorname{Hom}(U, V)=0$, and $\operatorname{Hom}(X, Y)=\operatorname{Hom}(Y, X)=0$ (Corollary 2.3). The next section discusses the sum of nilpotent-invariant modules and the finite/full exchange property of these modules. It is shown that: (1) If $M$ is a nilpotent-invariant, nonsingular square-free module and $\left\{K_{i}\right\}_{I}$ is a family of closed submodules of $M$, then $\sum_{I} K_{i}$ is a nilpotent-invariant module (Theorem 2.4); (2) Assume that $M$ is a nilpotent-invariant module with $S=\operatorname{End}(M)$.
(i) If $M$ has the finite exchange property, then $M$ has the full exchange property.
(ii) If $M$ has the finite exchange property, then every element of $S$ is sum of two units in $S$ if and only if no factor ring of $S$ is isomorphic to $\mathbb{Z}_{2}$.
(iii) $S / \Delta$ is right (C3), where $\Delta:=\left\{f \in S \mid \operatorname{Ker}(f) \leq^{e} M\right\}$ (Theorem 2.5).

Section 3 deals with rings $R$ over which every cyclic right $R$-module is nilpotent-invariant. We prove that $R \cong R_{1} \times R_{2}$, where $R_{1}, R_{2}$ are rings which satisfy $R_{1}$ is a semi-simple Artinian ring, $R_{2}$ is square-free as a right $R_{2}$-module, and all idempotents of $R_{2}$ is central (Theorem 3.2).

Section 3 proves that a module $M$ that has a decomposition $M=X \oplus Y$, where $X$ is a semisimple module, $Y$ is a square-free module, and $X$ and $Y$ are orthogonal if $M$ satisfies one of the following conditions: (a) $M$ is cyclic such that all factors are nilpotent-invariant and $M$ generates its cyclic subfactors, or (b) $M$ is a nilpotent-invariant module such that 2-generated subfactors are nilpotent-invariant (Theorem 3.3). This section concludes the section with a structure theorem for cyclic nilpotent-invariant right $R$-modules. Such a module is shown to have isomorphic simple modules $e R$ and $f R$, where $e, f$ are orthogonal primitive idempotents such that $e R f \neq 0$ (Theorem 3.6).

Throughout this article all rings are associative rings with unity, and all modules are right unital modules over a ring. We use $N \leq M(N<M)$ to mean that $N$ is a submodule (respectively, proper submodule) of $M$, and we write $N \leq^{e} M$ and $N \leq{ }^{\oplus} M$ to indicate that $N$ is an essential submodule of $M$ and $N$ is a direct summand of $M$, respectively. $E(-)$ denotes the injective envelope for a module.

## 2. Some decompositions of nilpotent-invariant modules

Lee and Zhou [12] showed that an automorphism-invariant module $M$ has a decomposition $M=A \oplus B$, where $A$ and $B$ are relatively injective. This also holds for nilpotent-invariant modules (see [8, Theorem 2.10(1)]).

A submodule $K$ of an $R$-module $M$ is called a closed submodule in $M$ if $K$ has no proper essential extension in $M$. Moreover, if $L$ is any submodule of $M$, then there exists, by Zorn's Lemma, a submodule $K$ of $M$ maximal with respect to the property that $L$ is an essential submodule of $K$, and in this case $K$ is a closed submodule of $M$. For a submodule $N$ of the module $M$, a closure
of $N($ in $M)$ is a submodule $K$ of $M$ which is maximal in the collection of submodules of $M$ containing $N$ as an essential submodule.
Lemma 2.1 ([18, Lemma 3.1]). If $M$ is a nilpotent-invariant module, $A$ is a closed submodule of $M$ and $B$ is a submodule of $M$ with $A \cap B=0$, then $A$ is $B$-injective. Moreover, for any monomorphism $h: A \rightarrow M$ with $A \cap h(A)=0$, $h(A)$ is a closed submodule of $M$.
Proof. Let $C$ be a complement of $A$ in $M$ containing $B$. Then $C \oplus A \leq^{e} M$. Let $f: H \rightarrow A$ be a homomorphism with $H \leq C$. By [8, Theorem 2.12(1)], there exist a homomorphism $g: E(C) \rightarrow E(A)$ and a nilpotent endomorphism $\phi$ of $E(M)$ such that $\phi(M) \leq M,\left.\phi\right|_{C}=\left.g\right|_{C}$ and $\left.\phi\right|_{H}=f$. Now $g(C)=\phi(C) \leq$ $M \cap E(A)=A$, which implies that $A$ is $C$-injective or $A$ is $B$-injective.

Assume that $h: A \rightarrow M$ is a monomorphism and $A \cap h(A)=0$. Let $K$ be a closure of $h(A)$. Then $A \cap K=0$. Therefore, $A$ is $K$-injective and so there exists $k: K \rightarrow A$ such that $k$ is an extension of $h^{-1}: h(A) \rightarrow A$. For all $a \in A$, we have $a=h^{-1} h(a)=k h(a)$. It follows that $h: A \rightarrow K$ is a split monomorphism and hence $h(A)=K$ is a closed submodule of $M$.

A module is called square-free if it does not contain a direct sum of two nonzero isomorphic submodules. Two modules are said to be orthogonal to each other if they do not contain nonzero isomorphic submodules.

Theorem 2.2. If $M$ is a nilpotent-invariant module, then $M$ has a decomposition $M=X \oplus Y$ such that $X$ is quasi-injective, $Y$ is square-free, $X$ and $Y$ are relatively injective and orthogonal.

Proof. Let $\Gamma=\{(A \oplus B, \gamma) \mid A, B \leq M, A \xlongequal{\gamma} B\}$. We consider an order relation over $\Gamma$ as follows:

$$
\left(A_{1} \oplus B_{1}, \gamma_{1}\right) \leq\left(A_{2} \oplus B_{2}, \gamma_{2}\right) \Leftrightarrow A_{1} \leq A_{2}, B_{1} \leq B_{2},\left.\gamma_{2}\right|_{A_{1}}=\gamma_{1} .
$$

By Zorn's Lemma, there exists a maximal element, say $(A \oplus B, \gamma)$. In addition, there exists a complement $C$ of $A \oplus B$ in $M$. It follows that $E(M)=E(A) \oplus$ $E(B) \oplus E(C)$ with $E(A) \cong E(B)$ and $M=(E(A) \cap M) \oplus(E(B) \cap M) \oplus(E(C) \cap$ $M)$ by [8, Theorem 2.14].

It is easy to see that $C=E(C) \cap M$. We now show that $A=E(A) \cap M$ and $B=E(B) \cap M$. Note that $A \leq^{e} E(A) \cap M$ and $B \leq^{e} E(B) \cap M$. By [8, Theorem $2.10(1)], E(B) \cap M$ is $(E(\bar{A}) \cap M)$-injective, there exists a homomorphism $\bar{\gamma}: E(A) \cap M \rightarrow E(B) \cap M$ such that $\left.\bar{\gamma}\right|_{A}=\gamma$. Since $A \leq^{e} E(A) \cap M$ and $\varphi$ is a monomorphism, $\bar{\gamma}$ is also a monomorphism. It is easy to see that $B$ is a submodule of $\bar{\gamma}(E(A) \cap M)$ and $\theta: E(A) \cap M \rightarrow \bar{\gamma}(E(A) \cap M)$ is an isomorphism via $\theta(x)=\bar{\gamma}(x)$ for all $x \in E(A) \cap M$. Thus

$$
[(A \oplus B, \gamma) \leq[(E(A) \cap M) \oplus \bar{\gamma}(E(A) \cap M), \theta]
$$

By the maximality of $(A \oplus B, \gamma)$, we have $A=E(A) \cap M$ and $B=\bar{\gamma}(E(A) \cap M)$ which implies that $B=\bar{\gamma}(A)$ is a closed submodule of $M$ by Lemma 2.1 or that $B=E(B) \cap M$. Thus $M=A \oplus B \oplus C$.

Since $A$ and $B$ are isomorphic and relatively injective, then $A \oplus B$ is quasiinjective. Furthermore, assume that there are nonzero submodules $U, V$ of $C$ such that $U \cap V=0$ and $\alpha: U \rightarrow V$ is an isomorphism. Then

$$
(A \oplus B, \gamma) \leq((A \oplus U) \oplus(B \oplus V), \gamma \oplus \alpha)
$$

It would contradict to the maximality of $(A \oplus B, \gamma)$. Thus $C$ is square-free.
Let $u: U \rightarrow A \oplus B$ be a maximal monomorphism from $U \leq C$ to $A \oplus B$. Then there exist a closed submodule $\bar{U}$ of $C$ with $U \leq^{e} \bar{U}$ and a monomorphism $\bar{u}: \bar{U} \rightarrow A \oplus B$ such that $\left.\bar{u}\right|_{U}=u$. It follows that $U=\bar{U}$ is a closed submodule of $M$ (since $C$ is a closed submodule of $M$ ). Then by Lemma 2.1, $u(U)$ is also a closed submodule of $A \oplus B$. Since $A \oplus B$ is a quasi-injective module, $u(U)$ is a direct summand of $A \oplus B$. So $U \cong u(U)$ is quasi-injective. Therefore $U$ is a direct summand of $C$, taking $C=U \oplus V$. Next, we show that $V$ and $A \oplus B \oplus U$ are orthogonal. Indeed, there exist two non-zero submodules $H$ and $K$ with $H \leq V$ and $K \leq A \oplus B \oplus U$. Note that $C=U \oplus V$ is square-free, and so $K \cap U=0$. Let $\pi: A \oplus B \oplus U \rightarrow A \oplus B$ be the projection. Then $H \cong K \cong K^{\prime}=\pi(K) \leq A \oplus B$. We can obtain an isomorphism $\varphi: H \rightarrow K^{\prime}$. Assume that $K^{\prime} \cap u(U) \neq 0$. Then $U$ and $V$ contain two non-zero isomorphic submodules. Since $C$ is square-free, it is a contradiction. So $K^{\prime}$ and $u(U)$ are orthogonal. It follows that $\varphi(H) \cap u(U)=0$.

Now we consider the following map

$$
\begin{array}{lll}
\phi: & H \oplus U & \rightarrow A \oplus B \\
& x+y & \mapsto \varphi(x)+u(y) .
\end{array}
$$

It is easy to see that $\phi$ is a monomorphism and $\left.\phi\right|_{U}=u$, this is a contradiction to the maximality of $u: U \rightarrow A \oplus B$. Taking $X=A \oplus B \oplus U$ and $Y=V$. Then $M=X \oplus Y, X$ is quasi-injective, $Y$ is square-free, $X$ and $Y$ are relatively injective and orthogonal.

Corollary 2.3. Assume that $M$ is a nonsingular nilpotent-invariant module with a decomposition $M=X \oplus Y$ as in Theorem 2.2. Then
(1) For any submodules $U, V$ of $Y$ with $U \cap V=0$, then $\operatorname{Hom}(U, V)=0$.
(2) $\operatorname{Hom}(X, Y)=\operatorname{Hom}(Y, X)=0$.

Let $M$ be a nonsingular square-free module. If $M$ is automorphism-invariant, then, for any family $\left\{K_{i}\right\}_{I}$ of closed submodules of $M$, the submodule $\sum_{I} K_{i}$ is automorphism-invariant (see [3, Theorem 6]).
Theorem 2.4. Assume that $M$ is a nilpotent-invariant, nonsingular squarefree module and $\left\{K_{i}\right\}_{I}$ is a family of closed submodules of $M$. Then $\sum_{I} K_{i}$ is a nilpotent-invariant module.
Proof. Let $A=\sum_{I} K_{i} \leq M$. There exists $B \leq M$ such that $A \oplus B \leq^{e} M$ and so $E(M)=E(A) \oplus E(B)$. For any nilpotent endomorphism $\gamma$ of $E(A)$, the $\operatorname{map} \bar{\gamma}: E(M) \rightarrow E(M)$ defined by $\bar{\gamma}(x+y)=\gamma(x)$ for all $x \in E(A), y \in E(B)$, is a nilpotent homomorphism. Since $M$ is nilpotent-invariant, $\bar{\gamma}(M) \leq M$. By $\left[3\right.$, Theorem 6(i)], we have $\bar{\gamma}\left(K_{i}\right) \leq K_{i}$ for all $i \in I$. Thus $\gamma(A) \leq A$.

A right $R$-module $M$ has the $\mathcal{N}$-exchange property, for some cardinal $\mathcal{N} \geq 2$, if whenever there are two direct sum decompositions $A=M^{\prime} \oplus N=\oplus_{\mathcal{N}} A_{i}$ with $M^{\prime} \cong M$, there exist submodules $B_{i}$ of $A_{i}$ such that $A=M^{\prime} \oplus\left(\oplus_{\mathcal{N}} B_{i}\right)$.

If $M$ has the $\mathcal{N}$-exchange property for all cardinals $\mathcal{N}$ (respectively, all finite cardinals), then we say $M$ has the full exchange property (respectively, the finite exchange property). A finitely generated module has the full exchange property if and only if it has the finite exchange property.

For any two direct summands $A, B$ of a module $M$ with $A \cap B=0$, if the sum $A+B$ is a direct summand of $M$, then $M$ is called (C3). By [8, Theorem 2.7], every nilpotent-invariant module is (C3).

For a module $M$, let $\Delta:=\left\{f \in S \mid \operatorname{Ker}(f) \leq^{e} M\right\}$.
Theorem 2.5. Let $M$ be a nilpotent-invariant module and $S=\operatorname{End}(M)$.
(1) If $M$ has the finite exchange property, then $M$ has the full exchange property.
(2) If $M$ has the finite exchange property, then every element of $S$ is a sum two units in $S$ if and only if no factor ring of $S$ is isomorphic to $\mathbb{Z}_{2}$.
(3) $S / \Delta(S)$ is right (C3).

Proof. (1) Assume that $M$ is a nilpotent-invariant module. By Theorem 2.2, we have $M=X \oplus Y$, where $X$ is quasi-injective and $Y$ is square-free. Since $Y$ is square-free with the finite exchange property, $Y$ has the full exchange property by [14, Theorem 9]. Otherwise, $X$ is quasi-injective so $X$ has the full exchange property. Now, by [4, Lemma 2.4], $M$ has the full exchange property.
(2) Assume that no factor ring of $S$ is isomorphic to $\mathbb{Z}_{2}$. By Theorem 2.2, $M=M_{1} \oplus M_{2}$, where $M_{1}$ is quasi-injective, $M_{2}$ is square-free and $M_{1}, M_{2}$ are orthogonal. Let

$$
\begin{aligned}
\Delta_{1} & =\left\{f \in S_{1}=\operatorname{End}\left(M_{1}\right) \mid \operatorname{Ker}(f) \leq^{e} M_{1}\right\}, \\
\Delta_{2} & =\left\{f \in S_{2}=\operatorname{End}\left(M_{2}\right) \mid \operatorname{Ker}(f) \leq^{e} M_{2}\right\}, \\
\bar{S} & =S / \Delta, \\
\overline{S_{1}} & =S_{1} / \Delta_{1}, \\
\overline{S_{2}} & =S_{2} / \Delta_{2} .
\end{aligned}
$$

By [14, Lemma 3.3], $\bar{S} \cong \overline{S_{1}} \oplus \overline{S_{2}}$. Since $M_{1}$ is quasi-injective, $\overline{S_{1}}$ is regular and right self-injective by [14, Theorem 3.10]. Furthermore, since $M_{2}$ is square-free, it follows that $\overline{S_{2}}$ is an exchange ring with no non-zero nilpotent elements by [14, Theorem 3.12(1)]. By [6, Theorem 1], each element of $\overline{S_{1}}$ is a sum of two units. Since $\overline{S_{2}}$ has no non-zero nilpotent elements, each idempotent in $\overline{S_{2}}$ is central. Now, if any element $a \in \overline{S_{2}}$ is not a sum of two units, it is easy to find an ideal, say $I$, of $\overline{S_{2}}$ such that $x=a+I \in \overline{S_{2}} / I$ is not a sum of two units in $\overline{S_{2}} / I$ and $\overline{S_{2}} / I$ has no central idempotents. This implies that $\overline{S_{2}} / I$ is an exchange ring without any non-trivial idempotents, and hence it must be local. Let $T=\overline{S_{2}} / I$. Then $x+J(T)$ is not a sum of two units in $T / J(T)$ which is a
division ring. Therefore, $T / J(T) \cong \mathbb{Z}_{2}$, a contradiction. Hence, every element of $\overline{S_{2}}$ is also a sum of two units. Therefore, every element of $\bar{S}$ is a sum of two units. Next, we observe that $\Delta \leq J(S)$. Suppose that $\Delta \not \leq J(S)$. Then $\Delta$ contains a non-zero idempotent, say $e$. But as $\operatorname{Ker}(e) \leq^{e} M, \operatorname{Ker}(e)=M$ and so $e=0$, a contradiction. Thus $\Delta \leq J(S)$. Therefore, we may conclude that every element of $S$ is a sum of two units.

The converse is obvious.
(3) By Theorem 2.2, we have composition $M=M_{1} \oplus M_{2}$, where $M_{1}$ is square-free, $M_{2}$ is quasi-injective and $M_{1}, M_{2}$ are orthogonal. By the same notations in the proof of (2), we have $\bar{S} \cong \overline{S_{1}} \oplus \overline{S_{2}}$ by [14, Lemma 3.3]. Since $M_{2}$ is quasi-injective, $\overline{S_{2}}$ is regular by [14, Theorem 3.10], hence $\overline{S_{2}}$ has (C2). Let $e, f$ be idempotents of $\overline{S_{1}}$ such that $\overline{e S_{1}} \cap \overline{f S_{1}}=0$. Since $e$ and $f$ are central by [13, Lemma 3.4], $\overline{e f}=\overline{f e} \in \overline{e S_{1}} \cap \overline{f S_{1}}=0$. Thus $\bar{e}$ and $\bar{f}$ are orthogonal idempotents, and $\overline{e S_{1}} \oplus \overline{f S_{1}}$ is a summand of $\overline{S_{1}}$. Hence $\overline{S_{1}} \overline{S_{1}}$ satisfies (C3). Therefore $\bar{S}_{\bar{S}}$ satisfies (C3).

A module $M$ is called purely infinite if $M \cong M \oplus M$. Assume that $M$ is a nilpotent-invariant module. By [8, Theorem 2.18], $M$ is a purely infinite module if and only if $E(M)$ is a purely infinite module.

Proposition 2.6. If $M$ is a nilpotent-invariant module, then every purely infinite submodule of $M$ is essential in a direct summand of $M$.

Proof. Assume that $N$ is a purely infinite submodule of $M$. Then $N=A_{1} \oplus A_{2}$, where $A_{1} \cong A_{2} \cong N$. So $E\left(A_{1}\right) \cong E\left(A_{2}\right)$. Furthermore, because $E(M)=$ $E\left(A_{1}\right) \oplus E\left(A_{2}\right) \oplus E\left(N^{\prime}\right)$ and by [8, Theorem 2.14], we have

$$
M=\left(E\left(A_{1}\right) \cap M\right) \oplus\left(E\left(A_{2}\right) \cap M\right) \oplus\left(E\left(N^{\prime}\right) \cap M\right) .
$$

Since $A_{1} \leq^{e} E\left(A_{1}\right) \cap M$ and $A_{2} \leq^{e} E\left(A_{2}\right) \cap M$, it is easy to get that $N=A_{1} \oplus A_{2}$ is essential in $\left(E\left(A_{1}\right) \cap M\right) \oplus\left(E\left(A_{2}\right) \cap M\right)$ which is a direct summand of $M$.

## 3. Rings over which every cyclic module is nilpotent-invariant

The section starts by dealing with rings for which each cyclic module is nilpotent-invariant.

Example 3.1. (1) The ring $\mathbb{Z}$ of integer numbers over which every cyclic module is nilpotent-invariant.
(2) (Björk's Example) Let $\mathbb{F}$ be a field and assume that $\varphi: \mathbb{F} \rightarrow \overline{\mathbb{F}} \subseteq \mathbb{F}$ is an isomorphism defined by $a \mapsto \bar{a}$, where the subfield $\overline{\mathbb{F}} \neq \mathbb{F}$. Let $R$ denote the left vector space on basis $\{1, t\}$, and make $R$ into an $\mathbb{F}$-algebra by defining $t^{2}=0$ and $t a=\varphi(a) t$ for all $a \in F$. Note that $R$ is a local ring and $J(R)=R t=\mathbb{F} t$ is the only proper left ideal of $R$. Clearly, every left cyclic module is nilpotentinvariant.

Theorem 3.2. Assume that every cyclic right $R$-module is nilpotent-invariant. Then $R \cong R_{1} \times R_{2}$, where $R_{1}, R_{2}$ are rings satisfying the following properties:
(1) $R_{1}$ is a semi-simple Artinian ring.
(2) $R_{2}$ is square-free as a right $R_{2}$-module and all idempotents of $R_{2}$ are central.

Proof. By the proof of Theorem 2.2, we have a decomposition $R_{R}=A \oplus B \oplus C$, where $A \cong B, C$ is square-free and $A \oplus B$ and $C$ are orthogonal. Let $N$ be a submodule of $A$. Then, $R / N \cong A / N \oplus B \oplus C$ is nilpotent-invariant by assumption. By Lemma $2.1, A / N$ is $B$-injective. Note that $A \cong B$ whence $A / Z$ is $A$-injective. Similarly, $C$ and all factor modules of $B$ are $A$-injective. Now, $A$ is a cyclic projective module and all of whose factors are $A$-injective. By [2, Corollary $9.3(\mathrm{ii})], A$ is a direct sum of uniform modules. We write $A=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}$, where $X_{i}$ are uniform submodules of $A$. Let $X$ be an arbitrary nonzero cyclic submodule of $X_{i}$ for any $i$. Then $X$ contains a nonzero factor, say $X^{\prime}$, of one of the factor modules of $A, B$ and $C$. Clearly, $X^{\prime}$ is $A$-injective, so it is $X_{i}$-injective for any $i$ and $X$-injective. We deduce that $X^{\prime}=X=X_{i}$ which implies that each $X_{i}$ is simple. Thus, $A \oplus B$ is a semisimple module. Since $A \oplus B$ and $C$ are orthogonal projective modules and the former is now semisimple, there are no nonzero homomorphisms between them. It means that $A \oplus B$ and $C$ are ideals of $R$. So $R=R_{1} \oplus R_{2}$ with $R_{1}=A \oplus B$ and $R_{2}=C$.

Let $e$ be an idempotent of $R_{2}$. We show that $e R(1-e)=0$ and $(1-e) R e=0$. Take $X=e R$ and $Y=(1-e) R$. Let $f: X \rightarrow Y$ be any homomorphism. Call $Y^{\prime}=f(X)$. Then there exists an isomorphism $\bar{f}: X / K \rightarrow Y^{\prime}$ with $K=$ $\operatorname{Ker}(f)$. It is easy to check that $X / K$ is a closed submodule of $R_{2} / K$. Clearly $K$ is essential in $X$ since $\left(R_{2}\right)_{R_{2}}$ is square-free. Let $U / K$ be a complement of $U / K \oplus\left(Y^{\prime} \oplus K\right) / K$ in $R_{2} / K$. Since $R_{2} / K$ is nilpotent-invariant by the assumption and $X / K \cong Y^{\prime} \cong\left(Y^{\prime} \oplus K\right) / K$, we obtain $\left(Y^{\prime} \oplus K\right) / K$ is closed in $R_{2} / K$ by the last part of the proof of Lemma 2.1. Applying [8, Theorem 2.14], we get $R_{2} / K=X / K \oplus\left(Y^{\prime} \oplus K\right) / K \oplus U / K$. Since $Y^{\prime} \cap(X+U) \leq Y^{\prime} \cap K=0$, we have $R_{2}=Y^{\prime} \oplus(X+U)$. It follows that $Y_{R_{2}}^{\prime}$ is projective, whence the above map $f$ splits. On the other hand, since $K$ is essential in $X$, we have $f=0$. So, $\operatorname{Hom}(X, Y)=0$. Similarly, we have $\operatorname{Hom}(Y, X)=0$. In particular, $e R(1-e)=0$ and $(1-e) R e=0$. It shows that $e$ is a central idempotent of $R$.

In Theorem 2.2, we obtained a decomposition for a nilpotent-invariant module $M$ such that $M=X \oplus Y$, where $X$ is quasi-injective, $Y$ is square-free, $X$ and $Y$ are relatively injective and orthogonal.

Theorem 3.3. A right $R$-module $M$ has a decomposition $M=X \oplus Y$, where $X$ is a semisimple module, $Y$ is a square-free module, and $X$ and $Y$ are orthogonal if $M$ satisfies one of the following conditions:
(1) $M$ is cyclic such that all factors are nilpotent-invariant, and generates its cyclic subfactors, or
(2) $M$ is a nilpotent-invariant module such that 2-generated subfactors are nilpotent-invariant.

Proof. We first note that $M$ has a decomposition $M=A \oplus B \oplus C$, where $A \cong B$ and $C$ is square-free and orthogonal to $A \oplus B$.
(1) By the proof of Theorem 3.2, all factors of the modules $B(\cong A)$ and $C$ are $A$-injective. Now let $A^{\prime}$ be any factor of $A$ and $D$ be a cyclic submodule of $A^{\prime}$. Since $D$ is generated by $M, D=D_{1}+\cdots+D_{n}$, where each $D_{i}$ is a factor of $B, B^{\prime}$ or $C$. Since $D_{1}$ is $A$-injective (whence $D_{1}$ is $A^{\prime}$-injective), we have $D_{1} \oplus D_{1}^{\prime}=A^{\prime}$ for some submodule $D_{1}^{\prime}$ of $A^{\prime}$. Clearly, $D=D_{1} \oplus\left(\pi\left(D_{2}\right)+\cdots+\pi\left(D_{n}\right)\right)$, where each $\pi: D_{1} \oplus D_{1}^{\prime} \rightarrow D_{1}^{\prime}$ is the canonical projection. Since each $\pi\left(D_{k}\right)$ is again a factor of $B$ and $C$, it is $A$-injective, whence it is $D_{1}^{\prime}$-injective. By induction on $n$, we obtain that $D$ is a direct sum of $A$-injective cyclic modules. Hence $D$ is $A$-injective. Now we have shown that each cyclic subfactor of $A$ is $A$-injective. By [2, Corollary 7.14], $A$ is semisimple. Therefore, $A \oplus B$ is semisimple. Now, the claim follows if we take $X=A \oplus B \oplus B^{\prime}$ and $Y=C$.
(2) Let $D$ and $L$ be submodules of $A$ such that $D \leq L$ and $L / D$ is cyclic, and let $T$ be a cyclic submodule of $B$. By the assumption, $L / D \oplus T$ is nilpotent-invariant, whence $L / D$ is $T$-injective. Then, cyclic subfactors of $A$ are $B$-injective, hence they are $A$-injective. Again, by [2, Corollary 7.14], $A$ is semisimple. The rest of the proof follows in the same way as (1).

We get the following lemma for using the following proofs.
Lemma 3.4. Assume that $M=A \oplus B$ is a nilpotent-invariant module. If $\varphi: A \rightarrow B$ is a monomorphism, then $\varphi(A)$ is a direct summand of $B$.

Proof. Suppose that $M=A \oplus B$ is a nilpotent-invariant module and $\varphi: A \rightarrow B$ is a monomorphism. Then, $A \cong \varphi(A)$ is $B$-injective by Lemma 2.1. Note that $\varphi(A)$ is a submodule of $B$. We deduce that $\varphi(A)$ is a direct summand of $B$.

Lemma 3.5. Assume that every cyclic right $R$-module is nilpotent-invariant. Let $e$ be a primitive idempotent of $R$. If $f$ is an idempotent of $R$ which is orthogonal to $e$ and if eaf $\neq 0$ for some $a \in R$, then $e R=e a f R$.

Proof. Let $r(e a)=\{x \in R: e a x=0\}$ denote the annihilator of $e a$ in $R$. Call $I=r(e a) \cap f R$. We have the following isomorphisms

$$
e a f R \times e R \cong f R / I \times e R \cong(e R \oplus f R) / I \cong(e+f) R / I
$$

It means that eafR $R$ e $R$ is a cyclic right $R$-module. By our assumption, eaf $R \times e R$ is a nilpotent-invariant module. Note that $e R$ is an indecomposable module and eaf $R \subset e R$. Thus, we must have $e R=e a f R$ by Lemma 3.4.

Theorem 3.6. Assume that every cyclic right $R$-module is nilpotent-invariant. If $e, f$ are orthogonal primitive idempotents such that $e R f \neq 0$, then $e R$ and $f R$ are isomorphic simple modules.

Proof. By the assumption and Lemma 3.5, eaf $R=e R$ for some $a \in R$. Hence eaf $R$ is a projective module. Note that eafR is a homomorphism image of $f R$. Since $f R$ is indecomposable, we get $e R=e a f R \cong f R$. We now show that $e R$ is a minimal right ideal of $R$. Let $e a \in e R$ and $e a \neq 0$. If $e a(1-e) \neq 0$, then $e a(1-e) R=e R$ by Lemma 3.5. Otherwise, $e a e=e a \neq 0$ and we get the following isomorphism

$$
e a e R \times e R \cong e a e R \oplus f R=(e a e+f) R
$$

By the hypothesis, eae $R \times e R$ is nilpotent-invariant. By Lemma 3.4, eae $R=$ $e R$. Thus eae $R=e R$ which implies that $e R$ is minimal.

Corollary 3.7. If $R$ is a semiperfect ring such that every cyclic right $R$-module is nilpotent-invariant, then $R \cong R_{1} \times R_{2}$ with
(1) $R_{1} \cong \mathbb{M}_{n_{1}}\left(D_{1}\right) \times \mathbb{M}_{n_{2}}\left(D_{2}\right) \times \cdots \times \mathbb{M}_{n_{k}}\left(D_{k}\right)$, where $\mathbb{M}_{n_{i}}\left(D_{i}\right)$ are rings of $n_{i} \times n_{i}$ matrices over division rings $D_{i}$.

$$
\text { (2) } R_{2} \cong\left(\begin{array}{cccccc}
L_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & L_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & L_{m}
\end{array}\right) \text { with local rings } L_{j} \text {. }
$$

Proof. By Theorem 3.2, $R \cong R_{1} \times R_{2}$, where $R_{1}$ is a semi-simple Artinian ring and $R_{2}$ is square-free as a right $R_{2}$-module and all idempotents of $R_{2}$ are central. Then, there exist division rings $D_{i}$ such that $R_{1} \cong \mathbb{M}_{n_{1}}\left(D_{1}\right) \times$ $\mathbb{M}_{n_{2}}\left(D_{2}\right) \times \cdots \times \mathbb{M}_{n_{k}}\left(D_{k}\right)$. On the other hand, $R$ is semiperfect and so $R_{2}$ is semiperfect. Then, $R_{2}=e_{1} R_{2} \oplus e_{2} R_{2} \oplus \cdots \oplus e_{m} R_{2}$, where $e_{i}$ are orthogonal local central idempotents of $R_{2}$. From Theorem 3.6 and the squareness-free of $R_{2}$, we obtain that $R_{2} \cong\left(\begin{array}{cccccc}e_{1} R_{2} & 0 & 0 & \cdots & 0 & 0 \\ 0 & e_{2} R_{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & e_{m} R_{2}\end{array}\right)$ and $e_{i} R_{2} \cong \operatorname{End}\left(e_{i} R_{2}\right)$ local rings.

Acknowledgment. The author is grateful to the referee for her/his valuable comments. The author would like to thank Prof. Truong Cong Quynh for valuable comments and useful discussion.

## References

[1] A. Abyzov, T. C. Quynh, and D. D. Tai, Dual automorphism-invariant modules over perfect rings, Sib. Math. J. 58 (2017), 743-751.
[2] N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending modules, Pitman Research Notes in Math., 313 Longman, Harlow, New York, 1994.
[3] N. Er, S. Singh, and A. K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra 379 (2013), 223-229. https: //doi.org/10.1016/j.jalgebra.2013.01.021
[4] A. Facchini, Module Theory, Birkhäuser/Springer Basel AG, Basel, 1998.
[5] P. A. Guil Asensio, T. C. Quynh, and A. K. Srivastava, Additive unit structure of endomorphism rings and invariance of modules, Bull. Math. Sci. 7 (2017), no. 2, 229246. https://doi.org/10.1007/s13373-016-0096-z
[6] D. Khurana and A. K. Srivastava, Right self-injective rings in which every element is a sum of two units, J. Algebra Appl. 6 (2007), no. 2, 281-286. https://doi.org/10. 1142/S0219498807002181
[7] M. T. Koşan and T. Özdin, Independently generated modules, Bull. Korean Math. Soc. 46 (2009), no. 5, 867-871. https://doi.org/10.4134/BKMS.2009.46.5.867
[8] M. T. Koşan and T. C. Quynh, Nilpotent-invariant modules and rings, Comm. Algebra 45 (2017), no. 7, 2775-2782. https://doi.org/10.1080/00927872.2016.1226873
[9] M. T. Koşan and T. C. Quynh, Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls, Appl. Algebra Engrg. Comm. Comput. 32 (2021), no. 3, 385-397. https://doi.org/10.1007/s00200-021-00494-8
[10] M. T. Koşan, T. C. Quynh, Z. Jan, Kernels of homomorphisms between uniform quasiinjective modules, J. Algebra Appl. https://doi.org/10.1142/S0219498822501584
[11] M. T. Koşan, T. C. Quynh, and A. K. Srivastava, Rings with each right ideal automorphism-invariant, J. Pure Appl. Algebra 220 (2016), no. 4, 1525-1537. https: //doi.org/10.1016/j.jpaa.2015.09.016
[12] T.-K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl. 12 (2013), no. 2, 1250159, 9 pp. https://doi.org/10. 1142/S0219498812501599
[13] S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CB09780511600692
[14] P. P. Nielsen, Square-free modules with the exchange property, J. Algebra 323 (2010), no. 7, 1993-2001. https://doi.org/10.1016/j.jalgebra.2009.12.035
[15] T. C. Quynh, A. N. Abyzov, P. Dan, and L. V. Thuyet, Rings characterized via some classes of almost-injective modules, Bull. Iranian Math. Soc. 47 (2021), no. 5, 1571-1584. https://doi.org/10.1007/s41980-020-00459-6
[16] T. C. Quynh, A. N. Abyzov, N. T. T. Ha, and T. Yildirim, Modules close to the automorphism-invariant and coinvariant, J. Algebra Appl. 18 (2019), no. 12, 1950235, 24 pp. https://doi.org/10.1142/S0219498819502359
[17] T. C. Quynh, A. N. Abyzov, and D. D. Tai, Modules which are invariant under nilpotents of their envelopes and covers, J. Algebra Appl. 20 (2021), no. 12, Paper No. 2150218, 20 pp. https://doi.org/10.1142/S0219498821502182
[18] T. C. Quynh, A. N. Abyzov, and D. T. Trang, Rings all of whose finitely generated ideals are automorphism-invariant, J. Algebra Appl. https://doi.org/10.1142/ S0219498822501596
[19] T. C. Quynh and M. T. Koşan, On automorphism-invariant modules, J. Algebra Appl. 14 (2015), no. 5, 1550074, 11 pp. https://doi.org/10.1142/S0219498815500747

## Nguyen Thi Thu Ha

Faculty of Fundamental Science
Industrial University of Ho Chi Minh City
12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Vietnam
Email address: nguyenthithuha@iuh.edu.vn


[^0]:    Received February 15, 2022; Accepted May 4, 2022.
    2020 Mathematics Subject Classification. Primary 16D40, 16E50, 16D90.
    Key words and phrases. Nilpotent-invariant module, automorphism-invariant module, square-free module, finite exchange property, full exchange property.

