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RINGS AND MODULES WHICH ARE STABLE UNDER
NILPOTENTS OF THEIR INJECTIVE HULLS

NGUYEN THI THU HA

ABSTRACT. It is shown that every nilpotent-invariant module can be de-
composed into a direct sum of a quasi-injective module and a square-free
module that are relatively injective and orthogonal. This paper is also
concerned with rings satisfying every cyclic right R-module is nilpotent-
invariant. We prove that R =2 R; X Ra, where R, Ry are rings which
satisfy R; is a semi-simple Artinian ring and Rs is square-free as a right
Rs-module and all idempotents of Rsa is central. The paper concludes
with a structure theorem for cyclic nilpotent-invariant right R-modules.
Such a module is shown to have isomorphic simple modules eR and fR,
where e, f are orthogonal primitive idempotents such that eRf # 0.

1. Introduction

Recall that a module M is called automorphism-invariant if it is invariant
under any automorphism of its injective hull [12] (see also, [7,9,11,19]). Some
properties of automorphism-invariant modules and the structure of rings via
the class of automorphism-invariant modules are studied (see [1,5,10,15,16,18]).
We notice that if f is a nilpotent endomorphism of E(M) of a module M with
f™ = 0 for some n, then 1+ f is an automorphism of E(M), where E(M)
denotes the injective hull of the module M. So it is easy to see that if a is
a nilpotent endomorphism of a module M, then 1 + « is an automorphism of
M. By this easy fact, a submodule N of M is said to be a nilpotent-invariant
submodule of M if a(N) < N for all nilpotent elements a of End(M). A
module is called a nilpotent-invariant module (or nil-invariant module) if it
is a nilpotent-invariant submodule of its injective hull [8]. All automorphism-
invariant modules are nilpotent-invariant but the converse is not true, in general
(see [8, Example 2.2]).

The first section deals with some decompositions of nilpotent-invariant mod-
ules. We prove that if M is a nilpotent-invariant module, then M has a de-
composition M = X &Y such that X is quasi-injective, Y is square-free, X
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and Y are relatively injective and orthogonal (Theorem 2.2). Assume that M
is a nonsingular nilpotent-invariant module with a decomposition M = X @Y
as per-above mentioned theorem. Then for any submodules U,V of Y with
UNV =0, then Hom(U, V) = 0, and Hom(X,Y) = Hom(Y, X) = 0 (Corollary
2.3). The next section discusses the sum of nilpotent-invariant modules and
the finite/full exchange property of these modules. It is shown that: (1) If M is
a nilpotent-invariant, nonsingular square-free module and {K;}; is a family of
closed submodules of M, then ), K; is a nilpotent-invariant module (Theorem
2.4); (2) Assume that M is a nilpotent-invariant module with S = End(M).

(i) If M has the finite exchange property, then M has the full exchange
property.

(ii) If M has the finite exchange property, then every element of S is sum
of two units in S if and only if no factor ring of S is isomorphic to Zs.

(iii) S/A is right (C3), where A := {f € S| Ker(f) <¢ M} (Theorem 2.5).

Section 3 deals with rings R over which every cyclic right R-module is
nilpotent-invariant. We prove that R = R; X Ry, where R;, Ry are rings
which satisfy R; is a semi-simple Artinian ring, Rs is square-free as a right
Rs-module, and all idempotents of Ry is central (Theorem 3.2).

Section 3 proves that a module M that has a decomposition M = X @ Y,
where X is a semisimple module, Y is a square-free module, and X and Y are
orthogonal if M satisfies one of the following conditions: (a) M is cyclic such
that all factors are nilpotent-invariant and M generates its cyclic subfactors,
or (b) M is a nilpotent-invariant module such that 2-generated subfactors are
nilpotent-invariant (Theorem 3.3). This section concludes the section with
a structure theorem for cyclic nilpotent-invariant right R-modules. Such a
module is shown to have isomorphic simple modules eR and fR, where e, f are
orthogonal primitive idempotents such that eRf # 0 (Theorem 3.6).

Throughout this article all rings are associative rings with unity, and all
modules are right unital modules over a ring. We use N < M (N < M) to
mean that N is a submodule (respectively, proper submodule) of M, and we
write N <¢ M and N <® M to indicate that N is an essential submodule of
M and N is a direct summand of M, respectively. F(—) denotes the injective
envelope for a module.

2. Some decompositions of nilpotent-invariant modules

Lee and Zhou [12] showed that an automorphism-invariant module M has a
decomposition M = A @ B, where A and B are relatively injective. This also
holds for nilpotent-invariant modules (see [8, Theorem 2.10(1)]).

A submodule K of an R-module M is called a closed submodule in M if K
has no proper essential extension in M. Moreover, if L is any submodule of
M, then there exists, by Zorn’s Lemma, a submodule K of M maximal with
respect to the property that L is an essential submodule of K, and in this case
K is a closed submodule of M. For a submodule N of the module M, a closure
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of N (in M) is a submodule K of M which is maximal in the collection of
submodules of M containing N as an essential submodule.

Lemma 2.1 ([18, Lemma 3.1]). If M is a nilpotent-invariant module, A is a
closed submodule of M and B is a submodule of M with AN B =0, then A is
B-injective. Moreover, for any monomorphism h : A — M with ANh(A) =0,
h(A) is a closed submodule of M.

Proof. Let C' be a complement of A in M containing B. Then C & A <° M.
Let f : H — A be a homomorphism with H < C. By [8, Theorem 2.12(1)],
there exist a homomorphism g : E(C') — E(A) and a nilpotent endomorphism
$ of B(M) such that (M) < M, dlc = glo- and gl = f. Now g(C) = 6(C) <
M N E(A) = A, which implies that A is C-injective or A is B-injective.
Assume that h : A — M is a monomorphism and AN h(4A) = 0. Let K
be a closure of h(A). Then AN K = 0. Therefore, A is K-injective and so
there exists k : K — A such that k is an extension of h=! : h(A) — A. For
all a € A, we have a = h™*h(a) = kh(a). It follows that h : A — K is a split
monomorphism and hence h(A) = K is a closed submodule of M. ]

A module is called square-free if it does not contain a direct sum of two
nonzero isomorphic submodules. Two modules are said to be orthogonal to
each other if they do not contain nonzero isomorphic submodules.

Theorem 2.2. If M is a nilpotent-invariant module, then M has a decompo-
sition M = X &Y such that X is quasi-injective, Y is square-free, X and Y
are relatively injective and orthogonal.

7
Proof. LetT' = {(A®B,~) | A,B < M, A= B}. We consider an order relation
over I' as follows:

(A1 ® B1,7m1) < (A2 @ By, 72) & A1 < Ay, By < Ba,y2la, =mi-

By Zorn’s Lemma, there exists a maximal element, say (A® B, ). In addition,
there exists a complement C of A @ B in M. It follows that E(M) = E(A) &
E(B)®E(C) with E(A) & E(B) and M = (E(A)NM)®(E(B)NM)& (E(C)N
M) by [8, Theorem 2.14].

It is easy to see that C' = E(C)N M. We now show that A = E(A)NM and
B = E(B)NM. Note that A <¢ E(A)NM and B <°® E(B)NM. By [8, Theorem
2.10 (1)], E(B) N M is (E(A) N M)-injective, there exists a homomorphism
¥ : E(A)NM — E(B) N M such that 7|4 = . Since A <¢ E(A)N M and
¢ is a monomorphism, 7 is also a monomorphism. It is easy to see that B
is a submodule of F(E(A) N M) and 0 : E(A)NM — F(E(A) N M) is an
isomorphism via §(z) = 7(x) for all x € E(A) N M. Thus

[(Ae B,y) < [(E(A) N M) &75(E(A) N M),0].

By the maximality of (A® B, ), we have A = E(A)NM and B =5(E(A)NM)
which implies that B = J(A) is a closed submodule of M by Lemma 2.1 or
that B=E(B)NM. Thus M = A®BaC.
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Since A and B are isomorphic and relatively injective, then A @ B is quasi-
injective. Furthermore, assume that there are nonzero submodules U,V of C
such that U NV =0 and a : U — V is an isomorphism. Then

(Ao B,y) < (AeU)e (BaV),yo )

It would contradict to the maximality of (A @ B,~). Thus C is square-free.

Let u: U — A ® B be a maximal monomorphism from U < C to A ® B.
Then there exist a closed submodule U of C' with U <¢ U and a monomorphism
@:U — A® B such that 4|y = u. It follows that U = U is a closed submodule
of M (since C is a closed submodule of M). Then by Lemma 2.1, u(U) is also
a closed submodule of A @ B. Since A ® B is a quasi-injective module, u(U)
is a direct summand of A ® B. So U = u(U) is quasi-injective. Therefore U
is a direct summand of C, taking C = U @& V. Next, we show that V and
A® B®U are orthogonal. Indeed, there exist two non-zero submodules H and
K with H<Vand K < A® B®U. Note that C = U & V is square-free,
and so KNU =0. Let m: A@ B®U — A ® B be the projection. Then
H>2K>K =n(K) < A® B. We can obtain an isomorphism ¢ : H — K.
Assume that K’ Nu(U) # 0. Then U and V' contain two non-zero isomorphic
submodules. Since C' is square-free, it is a contradiction. So K’ and u(U) are
orthogonal. It follows that o(H) Nu(U) = 0.

Now we consider the following map

¢ : HoU — Ao®B
z+y = o)+ uy).

It is easy to see that ¢ is a monomorphism and ¢|y = u, this is a contradiction
to the maximality of u : U — A® B. Taking X = A BdU and Y = V.
Then M = X @Y, X is quasi-injective, Y is square-free, X and Y are relatively
injective and orthogonal. O

Corollary 2.3. Assume that M is a nonsingular nilpotent-invariant module
with a decomposition M = X @Y as in Theorem 2.2. Then
(1) For any submodules U,V of Y with UNV =0, then Hom(U,V) = 0.
(2) Hom(X,Y) = Hom(Y, X) = 0.
Let M be a nonsingular square-free module. If M is automorphism-invariant,
then, for any family {K;}; of closed submodules of M, the submodule )", K;
is automorphism-invariant (see [3, Theorem 6]).

Theorem 2.4. Assume that M is a nilpotent-invariant, nonsingular square-
free module and {K;}1 is a family of closed submodules of M. Then ", K; is
a nilpotent-invariant module.

Proof. Let A = ZI K; < M. There exists B < M such that A ® B <¢ M and
so E(M) = E(A) @ E(B). For any nilpotent endomorphism v of E(A), the
map 7 : E(M) — E(M) defined by ¥(x+y) = v(z) for all z € E(A),y € E(B),
is a nilpotent homomorphism. Since M is nilpotent-invariant, 7(M) < M. By
[3, Theorem 6(i)], we have J(K;) < K; for all i € I. Thus y(A) < A. O
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A right R-module M has the N-exchange property, for some cardinal N' > 2,
if whenever there are two direct sum decompositions A = M’ & N = O A;
with M’ = M, there exist submodules B; of A; such that A = M’ @ (®xB;).

If M has the N-exchange property for all cardinals A (respectively, all finite
cardinals), then we say M has the full exchange property (respectively, the
finite exchange property). A finitely generated module has the full exchange
property if and only if it has the finite exchange property.

For any two direct summands A, B of a module M with AN B = 0, if the
sum A + B is a direct summand of M, then M is called (C3). By [8, Theorem
2.7], every nilpotent-invariant module is (C3).

For a module M, let A := {f € S|Ker(f) <¢ M}.

Theorem 2.5. Let M be a nilpotent-invariant module and S = End(M).

(1) If M has the finite exchange property, then M has the full exchange
property.

(2) If M has the finite exchange property, then every element of S is a sum
two units in S if and only if no factor ring of S is isomorphic to Zs.

(3) S/A(S) is right (C3).

Proof. (1) Assume that M is a nilpotent-invariant module. By Theorem 2.2,
we have M = X @Y, where X is quasi-injective and Y is square-free. Since Y is
square-free with the finite exchange property, Y has the full exchange property
by [14, Theorem 9]. Otherwise, X is quasi-injective so X has the full exchange
property. Now, by [4, Lemma 2.4], M has the full exchange property.

(2) Assume that no factor ring of S is isomorphic to Zs. By Theorem 2.2,
M = M; & M, where M is quasi-injective, Ms is square-free and M7, My are
orthogonal. Let

Al = {f S Sl = End(Ml) | Ker(f) Se M]_},
Ag = {f S SQ = End(Mg) | Ker(f) Se Mg},

T= /A,
Sil = Sl/Alv
S5 = Sy/As.

By [14, Lemma 3.3], S =2 S; @ S3. Since M; is quasi-injective, S; is regular and
right self-injective by [14, Theorem 3.10]. Furthermore, since My is square-free,
it follows that S, is an exchange ring with no non-zero nilpotent elements by
[14, Theorem 3.12(1)]. By [6, Theorem 1], each element of S; is a sum of two
units. Since S, has no non-zero nilpotent elements, each idempotent in S5 is
central. Now, if any element a € Sy is not a sum of two units, it is easy to find
an ideal, say I, of Sy such that 2 = a + I € Sy/I is not a sum of two units
in So/I and Sy/I has no central idempotents. This implies that Sy/I is an
exchange ring without any non-trivial idempotents, and hence it must be local.
Let T = Sy/I. Then z + J(T) is not a sum of two units in 7'/ J(T) which is a
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division ring. Therefore, T/ J(T') & Zs, a contradiction. Hence, every element
of Sy is also a sum of two units. Therefore, every element of S is a sum of two
units. Next, we observe that A < J(S). Suppose that A £ J(S). Then A
contains a non-zero idempotent, say e. But as Ker(e) <¢ M, Ker(e) = M and
so e = 0, a contradiction. Thus A < J(S). Therefore, we may conclude that
every element of S is a sum of two units.

The converse is obvious.

(3) By Theorem 2.2, we have composition M = M; & My, where M is
square-free, M is quasi-injective and Mj, My are orthogonal. By the same
notations in the proof of (2), we have S =2 S; @ Sy by [14, Lemma 3.3]. Since
My is quasi-injective, Sy is regular by [14, Theorem 3.10], hence Sy has (C2).
Let e, f be idempotents of S; such that eS;N fS; = 0. Since e and f are central
by [13, Lemma 3.4], ef = fe € eS; N fS; = 0. Thus € and f are orthogonal
idempotents, and eS; @ fS; is a summand of S;. Hence 5’715*1 satisfies (C3).
Therefore Sg satisfies (C3). O

A module M is called purely infinite if M = M @& M. Assume that M
is a nilpotent-invariant module. By [8, Theorem 2.18], M is a purely infinite
module if and only if E(M) is a purely infinite module.

Proposition 2.6. If M is a nilpotent-invariant module, then every purely
infinite submodule of M is essential in a direct summand of M.

Proof. Assume that N is a purely infinite submodule of M. Then N = A; & As,
where A; =2 Ay @ N. So E(A;) & E(A3). Furthermore, because E(M) =
E(A1) @ E(A2) @ E(N') and by [8, Theorem 2.14], we have

M = (E(A1) N M) @ (E(As) N M) ® (E(N') 0 M).

Since 41 <¢ E(A1)NM and Ay <¢ E(A9)NM, it is easy to get that N = A1 DAy
is essential in (E(A;)NM) @ (E(A2) M) which is a direct summand of M. O

3. Rings over which every cyclic module is nilpotent-invariant

The section starts by dealing with rings for which each cyclic module is
nilpotent-invariant.

Example 3.1. (1) The ring Z of integer numbers over which every cyclic
module is nilpotent-invariant.

(2) (Bjork’s Example) Let I be a field and assume that ¢ : F — F C F is an
isomorphism defined by a + @, where the subfield F # F. Let R denote the left
vector space on basis {1,t}, and make R into an F-algebra by defining t? = 0
and ta = p(a)t for all @ € F. Note that R is a local ring and J(R) = Rt = Ft
is the only proper left ideal of R. Clearly, every left cyclic module is nilpotent-
invariant.

Theorem 3.2. Assume that every cyclic right R-module is nilpotent-invariant.
Then R = Ry X Ry, where Ry, Ry are rings satisfying the following properties:
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(1) Ry is a semi-simple Artinian ring.
(2) Ry is square-free as a right Ro-module and all idempotents of Ry are
central.

Proof. By the proof of Theorem 2.2, we have a decomposition Rr = A& B&C,
where A 2 B, C is square-free and A ® B and C are orthogonal. Let N be
a submodule of A. Then, R/N = A/N @ B @ C is nilpotent-invariant by
assumption. By Lemma 2.1, A/N is B-injective. Note that A = B whence
A/Z is A-injective. Similarly, C' and all factor modules of B are A-injective.
Now, A is a cyclic projective module and all of whose factors are A-injective.
By [2, Corollary 9.3(ii)], A is a direct sum of uniform modules. We write
A=X® XD - - X,, where X; are uniform submodules of A. Let X be
an arbitrary nonzero cyclic submodule of X; for any ¢. Then X contains a
nonzero factor, say X', of one of the factor modules of A, B and C. Clearly,
X' is A-injective, so it is X;-injective for any ¢ and X-injective. We deduce
that X’ = X = X; which implies that each X; is simple. Thus, A ® B is a
semisimple module. Since A@ B and C' are orthogonal projective modules and
the former is now semisimple, there are no nonzero homomorphisms between
them. It means that A @ B and C are ideals of R. So R = Ry & Ry with
Ri=A® B and Ry =C.

Let e be an idempotent of Ry. We show that eR(1—e) = 0 and (1—e)Re = 0.
Take X =eRand Y = (1 —e)R. Let f: X — Y be any homomorphism. Call
Y’ = f(X). Then there exists an isomorphism f : X/K — Y’ with K =
Ker(f). It is easy to check that X/K is a closed submodule of Ry/K. Clearly
K is essential in X since (Rg)g, is square-free. Let U/K be a complement
of UK ® (Y@ K)/K in Ry/K. Since Ry/K is nilpotent-invariant by the
assumption and X/K 2 Y’ = (Y’ ¢ K)/K, we obtain (Y’ @ K)/K is closed in
Ry /K by the last part of the proof of Lemma 2.1. Applying [8, Theorem 2.14],
we get Ry/K = X/ K@ (Y@ K)/K@®U/K. SinceYN(X+U)<Y'NK =0,
we have Ry = Y' @ (X + U). It follows that Yp is projective, whence the
above map f splits. On the other hand, since K is essential in X, we have
f=0. So, Hom(X,Y) = 0. Similarly, we have Hom(Y, X) = 0. In particular,
eR(1 —e) =0 and (1 —e)Re = 0. It shows that e is a central idempotent of
R. O

In Theorem 2.2, we obtained a decomposition for a nilpotent-invariant mod-
ule M such that M = X @Y, where X is quasi-injective, Y is square-free, X
and Y are relatively injective and orthogonal.

Theorem 3.3. A right R-module M has a decomposition M = X®Y , where X
is a semisimple module, Y is a square-free module, and X andY are orthogonal
if M satisfies one of the following conditions:

(1) M is cyclic such that all factors are nilpotent-invariant, and generates
its cyclic subfactors, or
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(2) M is a nilpotent-invariant module such that 2-generated subfactors are
nilpotent-invariant.

Proof. We first note that M has a decomposition M = A@B®C, where A = B
and C' is square-free and orthogonal to A @ B.

(1) By the proof of Theorem 3.2, all factors of the modules B (= A) and C are
A-injective. Now let A’ be any factor of A and D be a cyclic submodule of A’.
Since D is generated by M, D = Dy+---+D,,, where each D; is a factor of B, B’
or C. Since Dj is A-injective (whence Dy is A’-injective), we have D;@D] = A’
for some submodule D} of A’. Clearly, D = D1 & (7(D2)+- - - +7(D,,)), where
each 7 : D1 ® D} — DJ is the canonical projection. Since each 7(D},) is again a
factor of B and C, it is A-injective, whence it is D/-injective. By induction on
n, we obtain that D is a direct sum of A-injective cyclic modules. Hence D is
A-injective. Now we have shown that each cyclic subfactor of A is A-injective.
By [2, Corollary 7.14], A is semisimple. Therefore, A ® B is semisimple. Now,
the claim follows if we take X =A@ B® B’ and Y = C.

(2) Let D and L be submodules of A such that D < L and L/D is cyclic,
and let T be a cyclic submodule of B. By the assumption, L/D & T is
nilpotent-invariant, whence L/D is T-injective. Then, cyclic subfactors of A
are B-injective, hence they are A-injective. Again, by [2, Corollary 7.14], A is
semisimple. The rest of the proof follows in the same way as (1). (I

We get the following lemma for using the following proofs.

Lemma 3.4. Assume that M = A & B is a nilpotent-invariant module. If
¢ : A — B is a monomorphism, then p(A) is a direct summand of B.

Proof. Suppose that M = A® B is a nilpotent-invariant module and ¢ : A — B
is a monomorphism. Then, A = ¢(A) is B-injective by Lemma 2.1. Note that
©(A) is a submodule of B. We deduce that ¢(A) is a direct summand of B. [

Lemma 3.5. Assume that every cyclic right R-module is nilpotent-invariant.
Let e be a primitive idempotent of R. If f is an idempotent of R which is
orthogonal to e and if eaf # 0 for some a € R, then eR = eafR.

Proof. Let r(ea) = {x € R : eax = 0} denote the annihilator of ea in R. Call
I =r(ea) N fR. We have the following isomorphisms

eafRxeR= fR/I x eR= (eR® fR)/I = (e+ f)R/I.

It means that eafR x eR is a cyclic right R-module. By our assumption,
eafR x eR is a nilpotent-invariant module. Note that eR is an indecomposable
module and eafR C eR. Thus, we must have eR = eafR by Lemma 3.4. O

Theorem 3.6. Assume that every cyclic right R-module is nilpotent-invariant.
If e, f are orthogonal primitive idempotents such that eRf # 0, then eR and
fR are isomorphic simple modules.
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Proof. By the assumption and Lemma 3.5, eaf R = eR for some a € R. Hence
eafR is a projective module. Note that eafR is a homomorphism image of
fR. Since fR is indecomposable, we get eR = eafR = fR. We now show that
eR is a minimal right ideal of R. Let ea € eR and ea # 0. If ea(l —e) # 0,
then ea(l —e)R = eR by Lemma 3.5. Otherwise, eae = ea # 0 and we get the
following isomorphism

eaeR x eR >~ eaeR® fR = (eae + f)R.

By the hypothesis, eaeR x eR is nilpotent-invariant. By Lemma 3.4, eaeR =
eR. Thus eaeR = eR which implies that eR is minimal. O

Corollary 3.7. If R is a semiperfect ring such that every cyclic right R-module
is nilpotent-invariant, then R = Ry X Ro with
(1) Ry M, (D7) x M,,,(D32) x -+ x M, (D), where M,,,(D;) are rings
of n; X n; matrices over division rings D;.

Ly o 0 --- 0 O
0 Ly 0 --- 0 O

(2) Ry = 00 0 - 0 0| wth local rings L;.
0O 0 0 --- 0 Ly

Proof. By Theorem 3.2, R =2 R; X Ry, where R; is a semi-simple Artinian
ring and Ry is square-free as a right Rp-module and all idempotents of Rs
are central. Then, there exist division rings D, such that Ry = M, (D;) x
M,,, (D2) X - -+ x M, (D). On the other hand, R is semiperfect and so Ry is
semiperfect. Then, Ry = e;Ro ® eaRo @ - -+ @ €, Ro, where e; are orthogonal

local central idempotents of Rs. From Theorem 3.6 and the squareness-free
Ry 0 0.0 0
610 : 62R2 0-- 0 0

of Ry, we obtain that Ry & (') (.) (') (.J (.] and e; Ry = End(e; Ra)
S 6 b ben

local rings.
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