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ON MEROMORPHIC SOLUTIONS OF NONLINEAR

PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS OF

FIRST ORDER IN SEVERAL COMPLEX VARIABLES

Qibin Cheng, Yezhou Li, and Zhixue Liu

Abstract. This paper is concerned with the value distribution for mero-
morphic solutions f of a class of nonlinear partial differential-difference

equation of first order with small coefficients. We show that such solutions

f are uniquely determined by the poles of f and the zeros of f − c, f − d
(counting multiplicities) for two distinct small functions c, d.

1. Introduction and the main theorem

For a point z0 ∈ Cm, f is holomorphic at z0 if it can be written as f(z) =∑∞
i=0Qi(z − z0) on a neighborhood U ⊂ Cm of z0, where the term Qi(z − z0)

is either identically zero or a homogeneous polynomial of degree i. We say f
is a nonzero “meromorphic” function on Cm if for all z0 ∈ Cm, one can choose
non-zero holomorphic functions f1 and f2 on a neighborhood U of z0 such that
f = f1

f2
on U and dim{z ∈ Cm | f1(z) = f2(z) = 0} ≤ m− 2.

We assume that the readers are familiar with standard notations of Nevan-
linna value distribution theory (see, e.g., [7,12,21,22,29]), such as the proximity
function m(r, f), the (integrated) counting function N(r, f), and the Nevan-
linna characteristic function T (r, f). The order and hyper-order of f are defined
respectively by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

A meromorphic function α(z) is called a small function with respect to f if
T (r, α) = o(T (r, f)) holds for all r possibly outside of a set E with finite
logarithmic measure, i.e., lm(E) =

∫
E

dt
t < ∞. Denote by S(f) the family

of all small functions with respect to f , and write Ŝ(f) = S(f) ∪ {∞}. For
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α ∈ Ŝ(f) ∩ Ŝ(g), we say that two meromorphic functions f and g share α CM
(IM), provided that f−α and g−α have the same zeros counting multiplicities
(ignoring multiplicities).

In 1926, Nevanlinna [20] proved the celebrated five-value theorem that for
two non-constant meromorphic functions f and g on the complex plane C, if
they have the same preimages (ignoring multiplicities) for five distinct values
in P1(C), then f = g. Afterwards, Nevanlinna five-value theorem was also
considered into the case of small functions [18,31]. Various uniqueness theories
of meromorphic or entire functions in different research directions had been
established by many scholars (see, e.g., [6, 12, 18, 19, 29]). For instance, in
1983, Mues and Steinmetz [19] and Gundersen [6] proved that a nonconstant
meromorphic function f and its first derivative f ′ are identical if they share
two finite values CM.

The study of uniqueness problems of meromorphic functions plays a signifi-
cant role in value distribution theory of complex analysis. The investigation of
uniqueness problems has also been extended to the case when f is a meromor-
phic solution of differential equations (see, e.g., [3, 8, 10, 11, 14, 15]). A typical
example is that Brosch [3] pointed out that a meromorphic solution to the

complex differential equation of Malmquist-Yosida type (w′)n =
∑2n

k=0 akw
k is

uniquely determined by three distinct values counting mutiplicities, where the
coefficients ak (k = 1, 2, . . . , 2n) are small with respect to the solution.

In recent years, many scholars have shown great interest in the uniqueness
problems in the case of higher dimension (see, e.g., [9, 13, 16, 24, 25]). In 2011,
Hu and Li [9] focused their attentions on a special class of nonlinear partial
differential equation of first order in m (≥ 1) independent complex variables,
that is,

(1)
∑

0<|i|<n

ai(∂u)
i =

n∑
j=0

bju
j ,

where i = (i1, i2, . . . , im) ∈ Zm denotes an index of m dimension with |i| =
i1 + i2 + · · ·+ im, ai = ai(z) and bj = bj(z) (j = 0, 1, . . . , n) are meromorphic
functions in z = (z1, z2, . . . , zm) ∈ Cm,

(∂u)i = (uz1)
i1(uz2)

i2 · · · (uzm)im , uzk =
∂u

∂zk
(k = 1, 2, . . . ,m).

Hu and Li [9] showed that a meromorphic solution f to partial differential
equation (1) could be uniquely determined by the poles of f and the zeros of
f − cl, where cl (l = 1, 2) are two distinct finite complex numbers.

In the 1970s and 1980s, Bank and Kaufman [1], Shimomura [23], Yanag-
ihara [27, 28] and other scholars had acquired some results on the existence
of meromorphic solutions to several classes of difference equations. Compared
with a few decades ago, complex difference equations, the discrete counter-
parts of differential equations, has gained much more attention today. Xu and
Cao [24] studied entire and meromorphic solutions of a Fermat-type partial
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differential-difference equation

(2)

(
∂u(z1, z2)

∂z1

)p

+ uq(z1 + ζ1, z2 + ζ2) = 1

in C2, and Xu and Wang [25] investigated the existence of transcendental entire
solutions of finite order for a kind of Fermat-type partial differential-difference
equation

(3)

(
∂u(z1, z2)

∂z1
+
∂u(z1, z2)

∂z2

)p

+ uq(z1 + ζ1, z2 + ζ2) = 1

in C2.
Based on the above results, we will make further study on meromorphic

solutions of a class of nonlinear partial differential-difference equation of first
order in Cm. The equation is of the form

(4)
∑

0<|i|<n

ai

m∏
k=1

[uzk(z + ξk)]
ik =

n∑
j=0

bju
j(z + ηj),

where i = (i1, i2, . . . , im) ∈ Zm denotes an index of m dimension with |i| =
i1+i2+· · ·+im, ai = ai(z) and bj = bj(z) (j = 0, 1 . . . , n) are meromorphic func-

tions in z = (z1, z2, . . . , zm) ∈ Cm, uzk(z + ξk) =
∂u
∂zk

(z + ξk) (k = 1, 2, . . . ,m),

and ξk, ηj (k = 1, 2, . . . ,m; j = 0, 1, . . . , n) are m-dimensional vectors in Cm.
As we can see, (1), (2) and (3) can be regarded as some specific cases of

(4). The left and the right of (4) are shifts of the corresponding sides of (1),
respectively. This paper is concerned with the value distribution for meromor-
phic solutions f of (4) with small functions coefficients, which shows that f
could be uniquely determined by its poles and the zeros of f − c, f − d with
c, d ∈ S(f) (Notice that c, d are not limited to finite complex constants). We
prove the following result:

Theorem 1.1. Suppose that f is a nonconstant meromorphic solution of (4)
in Cm with bn ̸≡ 0 and ai, bj ∈ S(f) (0 < |i| < n, 0 ≤ j ≤ n) such that

(5) lim sup
r→∞

log T (r, f)

r
= 0,

holds for all r /∈ E, where E is a set with zero upper density measure, i.e.,

densE = lim sup
r→∞

1

r

∫
E∩[1,r]

dt = 0.

Let c(z), d(z) be distinct small functions with respect to f satisfying H(z, c) =∑n
j=0 bj(z)c

j(z + ηj) ̸≡ 0 and H(z, d) =
∑n

j=0 bj(z)d
j(z + ηj) ̸≡ 0. If f and a

meromorphic function g in Cm share c(z), d(z) and ∞ CM, then f = g.

Noting that the set of meromorphic functions satisfying (5) consists of all
meromorphic functions with some being of hyper-order ρ2(f) < 1 and the
others being of hyper-order ρ2(f) = 1. In fact, let f(z) be a meromorphic
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function such that T (r, f) = exp{r · (log r)−λ} (λ > 0), we know easily that

lim sup
r→∞

log T (r,f)
r = 0 and ρ2(f) = 1.

The following counterexamples indicate the strictness of the conditions in
Theorem 1.1 in some aspects.

Example 1.2. The condition |i| < n in (4) cannot be improved. Let m =
3, n = 1, we consider the following partial differential-difference equation:

∂u

∂z1
(z1 + πi, z2 + πi, z3) +

∂u

∂z2
(z1 + 2πi, z2 + πi, z3 + πi)

= 2u

(
z1 +

πi

2
, z2 +

3πi

2
, z3

)
,

where i is the imaginary unit. Then f(z1, z2, z3) = ez1+z2+z3 is an entire
solution of the above equation. We can easily check that f(z1, z2, z3) and
g(z1, z2, z3) = e−(z1+z2+z3) share 1, −1, ∞ CM with H(z, 1) ̸≡ 0, H(z,−1) ̸≡ 0.
However, f ̸= g.

Example 1.3. The conditions H(z, c) ̸≡ 0 and H(z, d) ̸≡ 0 in Theorem 1.1
cannot be dropped. For instance, f(z1, z2, z3) = tan(αz1 + βz2 + γz3) is a
meromorphic solution of the partial differential-difference equation

∂u

∂z1

(
z1 +

π

4α
, z2 +

π

4β
, z3 +

π

2γ

)
+
∂u

∂z2

(
z1 +

π

6α
, z2 +

π

2β
, z3 +

π

3γ

)
+
∂u

∂z3

(
z1 +

π

8α
, z2 +

3π

4β
, z3 +

π

8γ

)
= (α+ β + γ)

[
1 + u2

(
z1 +

2π

3α
, z2 +

π

6β
, z3 +

π

6β

)]
.

Let i be the imaginary unit, we know that i,−i are two exceptional values of
f , which implies f(z1, z2, z3) and g(z1, z2, z3) = − tan(αz1 + βz2 + γz3) share
i, −i, ∞ CM. However, f ̸= g. The reason is that H(z, i) ≡ 0, H(z,−i) ≡ 0.

Example 1.4. The number of shared small functions cannot be reduced. Con-
sidering the following equation:

∂u

∂z1

(
z1 +

πi

2
, z2 −

πi

2
, z3

)
+
∂u

∂z2
(z1, z2, z3 + 2πi)

= − u2(z1 + πi, z2 − πi, z3 + 4πi),

where i is the imaginary unit. We have that f(z1, z2, z3) = 2
z1+z2+ez3 is a

meromorphic solution to the equation. Further, we can verify that f(z1, z2, z3)

and g(z1, z2, z3) = z1+ z2+ e
z3 share

√
2 and −

√
2 CM with H(z,

√
2) ̸≡ 0 and

H(z,−
√
2) ̸≡ 0. Obviously, f ̸= g.
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2. Preliminary lemmas

Here, we give some auxiliary lemmas which are of great importance to the
proof of our main result.

Lemma 2.1 (The First Main Theorem [17]). Let f be a meromorphic function

on Cm, and a ∈ Ŝ(f). Then, we have

T

(
r,

1

f − a

)
= T (r, f) + o(T (r, f))

for all r /∈ E with lm(E) <∞.

Lemma 2.2 (The Second Main Theorem [4, 5, 26]). Let f be a meromorphic

function on Cm, and a1, a2, . . . , aq ∈ Ŝ(f) are distinct (q ≥ 3). Then, we have

(q − 2)T (r, f) ≤
q∑

j=1

N

(
r,

1

f − aj

)
+ o(T (r, f))

for all r /∈ E with lm(E) <∞.

Lemma 2.3 (The Logarithmic Derivative Lemma [12, 30]). Suppose that f is
a nonconstant meromorphic function on Cm. Then

m

(
r,
fzk
f

)
= o(T (r, f))

for all r /∈ E with lm(E) <∞ and for any k ∈ {1, 2, . . . ,m}, where fzk = ∂f
∂zk

.

Lemma 2.4 (The Logarithmic Difference Lemma [4,32]). Let f be a noncon-
stant meromorphic function on Cm, and let c ∈ Cm \ {0}. If

lim sup
r→∞

log T (r, f)

r
= 0,

then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o(T (r, f))

for all r /∈ E with densE = 0.

Lemma 2.5 ([4]). Let f be a nonconstant meromorphic function on Cm. If

lim sup
r→∞

log T (r, f)

r
= 0,

then

T (r, f(z + c)) = T (r, f) + o(T (r, f)),

N(r, f(z + c)) = N(r, f) + o(T (r, f))

for any c ∈ Cm \ {0} and all r /∈ E with densE = 0.
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Remark 2.6. Both Lemma 2.4 and Lemma 2.5 imply m(r, f(z+c)) = m(r, f)+
o(T (r, f)) for any c ∈ Cm \ {0} and all r /∈ E with densE = 0, provided that f

is a nonconstant meromorphic function on Cm satisfying lim sup
r→∞

log T (r,f)
r = 0.

Lemma 2.7 ([2,12]). Let fj (j = 1, 2, . . . , n) (n ≥ 2) be meromorphic functions
and gj (j = 1, 2, . . . , n) be entire functions in Cm satisfying

(i)
∑n

j=1 fje
gj = 0;

(ii) gj − gk are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o(T (r, egh−gk)) for all r /∈ E

with lm(E) <∞.

Then, fj = 0 (j = 1, 2, . . . , n).

A slight modification to the proof of [9, Lemma 2.2] yields the following
lemma, which lays a foundation for the proof of Theorem 1.1.

Lemma 2.8. Let f be a nonconstant meromorphic solution of (4) with bn ̸≡ 0
on Cm such that

(6)
∑

0<|i|<n

T (r, ai) +

n∑
j=0

T (r, bj) = o(T (r, f))

and

lim sup
r→∞

log T (r, f)

r
= 0

hold for all r /∈ E = E1∪E2 with lm(E1) <∞ and densE2 = 0. Then we have

(7) m(r, f) = o(T (r, f))

holds for all r /∈ E = E1∪E2 with lm(E1) <∞ and densE2 = 0. Furthermore,
if d ∈ S(f) satisfies

H(z, d) =

n∑
j=0

bj(z)d
j(z + ηj) ̸≡ 0,

then

(8) m

(
r,

1

f − d

)
= o(T (r, f))

holds for all r /∈ E = E1 ∪ E2 with lm(E1) <∞ and densE2 = 0.

Proof. From the assumption that f is a nonconstant meromorphic solution of
(4), we get∑

0<|i|<n

ai[fz1(z + ξ1)]
i1 [fz2(z + ξ2)]

i2 · · · [fzm(z + ξm)]im =

n∑
j=0

bjf
j(z + ηj).
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Thus,

f(z + ηn) =
1

bn

( ∑
0<|i|<n

ai
[fz1(z + ξ1)]

i1 · · · [fzm(z + ξm)]im

fn−1(z + ηn)

−
n−1∑
j=0

bj
f j(z + ηj)

fn−1(z + ηn)

)
.(9)

As we know, m(r, f(z + ηn)) = 0 when |f(z + ηn)| < 1. So it suffices to
consider the term m(r, f(z + ηn)) in the case of |f(z + ηn)| ≥ 1. For 0 ≤ k ≤
n− 1, 1

|f(z+ηn)|k ≤ 1. Hence, by (9) we have the following estimation:

|f(z + ηn)| ≤
∣∣∣∣ 1bn
∣∣∣∣
( ∑

0<|i|<n

|ai|
∣∣∣∣fz1(z + ξ1)

f(z + ηn)

∣∣∣∣i1 · · · ∣∣∣∣fzm(z + ξm)

f(z + ηn)

∣∣∣∣im

+

n−1∑
j=0

|bj |
∣∣∣∣ f(z + ηj)

f(z + ηn)

∣∣∣∣j
)

when |f(z + ηn)| ≥ 1, which implies that

m(r, f) = m(r, f(z + ηn)) + o(T (r, f))

≤
∑

0<|i|<n

{
m(r, ai) + i1m

(
r,
fz1(z + ξ1)

f(z + ηn)

)

+ · · ·+ imm

(
r,
fzm(z + ξm)

f(z + ηn)

)}
+

n−1∑
j=0

m(r, bj)

+

n−1∑
j=0

jm

(
r,
f(z + ηj)

f(z + ηn)

)
+m

(
r,

1

bn

)
+ o(T (r, f))

holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. By
Lemmas 2.3, 2.4 and Remark 2.6, we further get from the assumption (6) that
m(r, f) = o(T (r, f)), i.e., (7) holds.

Next, we prove (8). Let g = f − d, where d ∈ S(f). Since m
(
r, 1g

)
= 0

for |g(z)| > 1, we only need to consider the case that |g(z)| ≤ 1. The solution
f = g + d of (4) ensures that∑

0<|i|<n

ai

m∏
k=1

[gzk(z + ξk) + dzk(z + ξk)]
ik =

n∑
j=0

bj [g(z + ηj) + d(z + ηj)]
j .(10)

For the term
∏m

k=1[gzk(z + ξk) + dzk(z + ξk)]
ik , we rewrite it as follows:

m∏
k=1

[gzk(z + ξk) + dzk(z + ξk)]
ik = [gz1(z + ξ1)]

i1 · · · [gzm(z + ξm)]im +Qi
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=

m∏
k=1

[gzk(z + ξk)]
ik +Qi,

where Qi is a polynomial in gz1(z+ξ1), gz2(z+ξ2), . . . , gzm(z+ξm) with degree
less than |i| = i1+ i2+ · · ·+ im and with coefficients being small functions with
respect to f (thus are also small with respect to g). Hence, the left-hand side
of (10) can be reformulated as follows:∑

0<|i|<n

ai

m∏
k=1

[gzk(z + ξk) + dzk(z + ξk)]
ik

=
∑

0<|i|<n

ai

m∏
k=1

[gzk(z + ξk)]
ik +

∑
0<|i|<n

aiQi

=
∑

0<|i|<n

ai

m∏
k=1

[gzk(z + ξk)]
ik +Q∗,(11)

where Q∗ =
∑

0<|i|<n aiQi is a polynomial in gz1(z+ξ1), gz2(z+ξ2), . . . , gzm(z+

ξm) with degree less than n− 1 and with small coefficients.
For the right-hand side of (10), we have

n∑
j=0

bj(z)[g(z + ηj) + d(z + ηj)]
j

=

n∑
j=0

bj(z)

j∑
s=0

(
j
s

)
gs(z + ηj)d

j−s(z + ηj)

=

n∑
j=1

bj(z)

j∑
s=1

(
j
s

)
gs(z + ηj)d

j−s(z + ηj) +H(z, d),(12)

where H(z, d) =
∑n

j=0 bj(z)d
j(z + ηj). It follows from (10)-(12) that∑

0<|i|<n

ai

m∏
k=1

[gzk(z + ξk)]
ik +Q∗

=

n∑
j=1

bj(z)

j∑
s=1

(
j
s

)
gs(z + ηj)d

j−s(z + ηj) +H(z, d).

Divide both sides of the above equation by g(z)H(z, d), we obtain

1

g(z)
=

1

H(z, d)

∑
0<|i|<n

ai
[gz1(z + ξ1)]

i1 [gz2(z + ξ2)]
i2 · · · [gzm(z + ξm)]im

g(z)

+
1

H(z, d)

Q∗

g(z)
− 1

H(z, d)

n∑
j=1

bj(z)

j∑
s=1

(
j
s

)gs(z + ηj)

g(z)
dj−s(z + ηj).(13)
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When |g(z)| ≤ 1, we get the following inequality

1

|g(z)|
≤
∣∣∣∣ 1

H(z, d)

∣∣∣∣ ∑
0<|i|<n

|ai|
∣∣∣∣gz1(z + ξ1)

g(z)

∣∣∣∣i1 ∣∣∣∣gz2(z + ξ2)

g(z)

∣∣∣∣i2 · · · ∣∣∣∣gzm(z + ξm)

g(z)

∣∣∣∣im

+

∣∣∣∣ 1

H(z, d)

∣∣∣∣ ∣∣∣∣Q∗

g

∣∣∣∣+ ∣∣∣∣ 1

H(z, d)

∣∣∣∣ n∑
j=1

|bj(z)|
j∑

s=1

(
j
s

) ∣∣∣∣g(z + ηj)

g(z)

∣∣∣∣s |d(z + ηj)|j−s,

which implies

m

(
r,
1

g

)
≤ O

 ∑
0<|i|<n

m (r, ai) +

m∑
k=1

m

(
r,
gzk(z + ξk)

g(z)

)
+m

(
r,

1

H(z, d)

)
+O

 n∑
j=1

{
m

(
r,
g (z + ηj)

g(z)

)
+m (r, bj) +m (r, d(z + ηj))

} .(14)

By Lemmas 2.3, 2.4, we know

m

(
r,
gzk(z + ξk)

g(z)

)
≤ m

(
r,
gzk(z + ξk)

g(z + ξk)

)
+m

(
r,
g(z + ξk)

g(z)

)
= o(T (r, g)),

and

m

(
r,
g(z + ηj)

g(z)

)
= o(T (r, g))

for k = 1, 2, . . . ,m and j = 1, 2, . . . , n. Together with (6), it can be concluded
from (14) that

m

(
r,

1

f − d

)
= m

(
r,
1

g

)
= o(T (r, f))

holds for all r /∈ E = E1 ∪ E2 with lm(E1) <∞ and densE2 = 0. □

3. Proof of Theorem 1.1

Since f and g share c, d,∞ CM, we get

(15)
f − c

g − c
= eα,

f − d

g − d
= eβ ,

where α and β are two entire functions on Cm. By Lemma 2.2,

T (r, g) ≤ N(r, g) +N

(
r,

1

g − c

)
+N

(
r,

1

g − d

)
+ o(T (r, g))

= N(r, f) +N

(
r,

1

f − c

)
+N

(
r,

1

f − d

)
+ o(T (r, g))

= 3T (r, f) + o(T (r, g))

holds for all r /∈ E with lm(E) <∞. Furthermore, we deduce that

T (r, g) ≤ (3 + o(1))T (r, f).
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In view of (15), we have

T (r, eα) ≤ T (r, f) + T (r, g) + o(T (r, f)) ≤ (4 + o(1))T (r, f),(16)

T (r, eβ) ≤ T (r, f) + T (r, g) + o(T (r, f)) ≤ (4 + o(1))T (r, f)(17)

hold for all r /∈ E with lm(E) <∞.
By (15), if z0 ∈ Cm is a zero of f − c, z0 must be a zero of g− c. It is easy to

check that z0 is also a zero of g−d
f−d − 1 or c− d. So by Lemma 2.1 and Lemma

2.8, we obtain

T (r, f) = N

(
r,

1

f − c

)
+m

(
r,

1

f − c

)
+ o(T (r, f))

≤ N

(
r,

1
g−d
f−d − 1

)
+N

(
r,

1

c− d

)
+ o(T (r, f))

≤ T

(
r,
g − d

f − d

)
+ o(T (r, f)) = m

(
r,
g − d

f − d

)
+ o(T (r, f))

≤ m(r, g) + o(T (r, f))(18)

holds for all r /∈ E = E1 ∪ E2 with lm(E1) <∞ and densE2 = 0.
By simple calculation and analysis, it can be concluded from (15) that f = g

if and only if eα = 1 or eβ = 1 or eα = eβ . We now suppose to the contrary
that f ̸= g, which means

eα ̸= 1, eβ ̸= 1, eα ̸= eβ , eβ−α ̸= 1.

From (15), we get the following expression for f and g:

f = c+ (d− c)
eβ − 1

eβ−α − 1
, g = d+ (d− c)

1− e−α

eβ−α − 1
.

For k ∈ {1, 2, . . . ,m} and j ∈ {0, 1, . . . , n}, we have

fzk = czk +
(dzk − czk)(e

β − 1)

(eβ−α − 1)

+
(d− c)(αzke

2β−α − βzke
β + βzke

β−α − αzke
β−α)

(eβ−α − 1)2

and

f(z + ηj) = c(z + ηj) + (d(z + ηj)− c(z + ηj))
(eβ(z+ηj) − 1)

eβ(z+ηj)−α(z+ηj) − 1
.

For the sake of simplicity, we will use short notations

f
1k
(z) = f(z + ξk), fk

1k
(z) = fzk(z + ξk), f

2j
(z) = f(z + ηj)



NONLINEAR PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS 435

for meromorphic function f and k ∈ {1, 2, . . . ,m}, j ∈ {0, 1, . . . , n}. Since f is
a solution to equation (4), we get the equality∑

0<|i|<n

ai

m∏
k=1

{
d
1k − c1k(

eβ
1k−α1k − 1

)2 [αk
1ke2β

1k−α1k

− βk
1k
eβ

1k

+
(
βk

1k − αk
1k
)
eβ

1k−α1k
]
+ ck

1k +
(
eβ

1k

− 1
) dk1k − ck

1k

eβ
1k−α1k − 1

}ik

=

n∑
j=0

bj

[
c2j +

(
d
2j − c2j

) eβ
2j

− 1

eβ
2j−α2j − 1

]j
.

Multiplying
m∏

k=1

(
eβ

1k−α1k

− 1
)2n n∏

j=0

(
eβ

2j−α2j

− 1
)j

to both sides of the

above equality, we obtain

n∏
j=0

(
eβ

2j−α2j

− 1
)j ∑

0<|i|<n

ai

m∏
k=1

(
eβ

1k−α1k

− 1
)2n−2ik

{[
αk

1ke2β
1k−α1k

−βk
1k
eβ

1k

+
(
βk

1k − αk
1k
)
eβ

1k−α1k
](
d
1k − c1k

)
+ ck

1k
(
eβ

1k−α1k

− 1
)2

+
(
eβ

1k

− 1
)(
dk

1k − ck
1k
)(
eβ

1k−α1k

− 1
)}ik

=

m∏
k=1

(
eβ

1k−α1k

− 1
)2n n∑

j=0

bj

[
c2j
(
eβ

2j−α2j

− 1
)

+
(
d
2j − c2j

)(
eβ

2j

− 1
)]j ∏

s̸=j

(
eβ

2s−α2s

− 1
)s
.(19)

For any vector τ ∈ Cm \ {0}, by (16), (17) and Lemma 2.5 we know

T
(
r, eα(z+τ)

)
= T (r, eα) + o(T (r, eα)) = T (r, eα) + o(T (r, f))

and

T
(
r, eβ(z+τ)

)
= T (r, eβ) + o(T (r, eβ)) = T (r, eβ) + o (T (r, f))

hold for all r /∈ E = E1∪E2 with lm(E1) <∞ and densE2 = 0, which indicate
that eα(z) (resp. eβ(z)) grows as fast as its shift eα(z+τ) (resp. eβ(z+τ)) does.
Be aware that

eα(z+τ) = eα(z)eα(z+τ)−α(z),

eα(z+τ) can be represented as the product of eα(z) and a small function with
respect to f on account of (16), (17) and Lemma 2.4. Similarly, eβ(z+τ) can be
represented as the product of eβ(z) and a small function with respect to f .
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Based on the discussion above, (19) can be rewritten as the form

(20)

K∑
p=0

K∑
q=0

φp,qe
pβ−qα =

K∑
p=0

K∑
q=0

ψp,qe
pβ−qα,

where K = 2nm+ n(n+1)
2 , φp,q are either 0 or polynomials in α1k

k and β
1k

k with

coefficients being products of a nonzero integer, ai, c
1k
k , d

1k

k − c1kk , d
1k − c1k,

eβ
1k−β , eα−α1k

and eβ
2j−β+α−α2j

, where k ∈ {1, 2, . . . ,m}, j ∈ {0, 1, . . . , n}.
And ψp,q are either 0 or polynomials in bj with coefficients being products

of a nonzero integer, c2j , d
2j − c2j , eβ

2j−β , eα−α2j

and eβ
1k−β+α−α1k

, where
j ∈ {0, 1, . . . , n}, k ∈ {1, 2, . . . ,m}. In conclusion, φp,q and ψp,q are small with

respect to meromorphic function f for any p ∈ {0, 1, . . . , 2nm + n(n+1)
2 } and

q ∈ {0, 1, . . . , 2nm + n(n+1)
2 }. From the observation of enβ−0α on each side of

(20), we deduce φn,0 = 0 and

ψn,0 = (−1)2nm+
n(n−1)

2 bn

(
d
2n − c2n

)n
en(β

2n−β) ̸= 0.

Furthermore, we rewrite (20) as

(21)

K∑
p=0

K∑
q=0

ϕp,qe
pβ−qα = 0,

where K = 2nm + n(n+1)
2 , ϕp,q = φp,q − ψp,q and ϕn,0 = φn,0 − ψn,0 ̸= 0. By

Lemma 2.3, it is concluded from (16) and (17) that

m(r, αzk) = m

(
r,
(eα)zk
eα

)
= o(T (r, eα)) = o(T (r, f)),

m(r, βzk) = m

(
r,
(eβ)zk
eβ

)
= o(T (r, eβ)) = o(T (r, f))

hold for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0 and for any

k ∈ {1, 2, . . . ,m}. Since ai, c, d, czk , dzk , e
β
1k−β , eα−α1k

, eβ
2j−β , eα−α2j

and bj (1 ≤ k ≤ m, 0 ≤ j ≤ n) are all small functions with respect to f , it
follows that

(22) T (r, φp,q) = o(T (r, f)), T (r, ϕp,q) = o(T (r, f))

hold for all r /∈ E = E1 ∪ E2 with lm(E1) <∞ and densE2 = 0.
Next, we are going to make an estimation of the proximity function of euα+vβ

for any pair of integers u, v with (u, v) ̸= (0, 0). Our discussion will be divided
into four cases.

Case 1: u ≥ 0 and v ≥ 0. By Lemma 2.8, it is easy to verify that

m
(
r, euα+vβ

)
= m

(
r,

(
f − c

g − c

)u(
f − d

g − d

)v)
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≤ m

(
r,

1

(g − c)u(g − d)v

)
+ o(T (r, f))

≤ m

(
r,

(
f − c

g − c

)u(
f − d

g − d

)v)
+m

(
r,

1

(f − c)u(f − d)v

)
+ o(T (r, f))

= m
(
r, euα+vβ

)
+ o(T (r, f)),

which implies

(23) m
(
r, euα+vβ

)
= m

(
r,

1

(g − c)u(g − d)v

)
+ o(T (r, f))

holds for all r /∈ E = E1 ∪ E2 with lm(E1) <∞ and densE2 = 0. Notice that

m

(
r,

1

(g − c)u(g − d)v

)
= T

(
r,

1

(g − c)u(g − d)v

)
−N

(
r,

1

(g − c)u(g − d)v

)
= (u+ v)T (r, g)−N

(
r,

1

(g − c)u(g − d)v

)
+ o(T (r, f))(24)

holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. Owing to
the assumption that f and g share c, d CM, by Lemma 2.8 we further gets

N

(
r,

1

(g − c)u(g − d)v

)
= uN

(
r,

1

g − c

)
+ vN

(
r,

1

g − d

)
= uN

(
r,

1

f − c

)
+ vN

(
r,

1

f − d

)
= (u+ v)T (r, f) + o(T (r, f))(25)

holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. Combine
(23)-(25) with the assumption that meromorphic functions f and g share ∞
CM, we know

m
(
r, euα+vβ

)
= (u+ v)(T (r, g)− T (r, f)) + o(T (r, f))

= (u+ v)(m(r, g)−m(r, f)) + o(T (r, f))

= (u+ v)m(r, g) + o(T (r, f)) ≥ m(r, g) + o(T (r, f)),

that is, when (u, v) ̸= (0, 0), m
(
r, euα+vβ

)
≥ m(r, g) + o(T (r, f)) holds for all

r /∈ E = E1 ∪ E2 with lm(E1) <∞ and densE2 = 0.

Case 2: u ≥ 0, v ≤ 0 and (u, v) ̸= (0, 0). Making use of a similar reasoning as
in Case 1, we have

m
(
r, euα+vβ

)
= m

(
r,

(
f − c

g − c

)u(
f − d

g − d

)v)
= m

(
r,

1

(g − c)u(g − d)v

)
+ o(T (r, f))
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= T

(
r,

1

(g − c)u(g − d)v

)
−N

(
r,

1

(g − c)u(g − d)v

)
+ o(T (r, f))

= max{u,−v}T (r, g)−N

(
r,

1

(g − c)u(g − d)v

)
+ o(T (r, f)).

For the second term in the right-hand side of the equality above, we obtain the
following estimation

N

(
r,

1

(g − c)u(g − d)v

)
≤ uN

(
r,

1

g − c

)
+max{0,−u− v}N(r, g − d)

= uN

(
r,

1

f − c

)
+max{0,−u− v}N(r, f) + o(T (r, f))

= (uT (r, f) + max{0,−u− v}T (r, f)) + o(T (r, f))

= max{u,−v}T (r, f) + o(T (r, f)).

Hence,

m
(
r, euα+vβ

)
= max{u,−v}T (r, g)−max{u,−v}T (r, f) + o(T (r, f))

= max{u,−v}m(r, g) + o(T (r, f)),

which yields that when u ≥ 0, v ≤ 0 and (u, v) ̸= (0, 0), m
(
r, euα+vβ

)
≥

m(r, g) + o(T (r, f)) holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and
densE2 = 0.

Case 3: u ≤ 0, v ≥ 0 and (u, v) ̸= (0, 0). In virtue of Lemma 2.1, we have

m
(
r, euα+vβ

)
= T

(
r, euα+vβ

)
−N

(
r, euα+vβ

)
= T

(
r, e−uα−vβ

)
+O(1)

= m
(
r, e−uα−vβ

)
+ o(T (r, f)),

that is,

(26) m
(
r, euα+vβ

)
= m

(
r, e−uα−vβ

)
+ o(T (r, f))

holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. Thus, by
a similar discussion as in Case 2, we deduce from (26) that m

(
r, euα+vβ

)
≥

m(r, g) + o(T (r, f)) holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and
densE2 = 0 when u ≤ 0, v ≥ 0 and (u, v) ̸= (0, 0).

Case 4: u ≤ 0, v ≤ 0 and (u, v) ̸= (0, 0). In this case, −u ≥ 0 and −v ≥ 0.
As discussed in Case 1 for −u,−v, we see from (26) that m

(
r, euα+vβ

)
≥

m(r, g) + o(T (r, f)) holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and
densE2 = 0 when u ≤ 0, v ≤ 0 and (u, v) ̸= (0, 0).

Therefore, for any pair of integers u, v with (u, v) ̸= (0, 0),

m
(
r, euα+vβ

)
≥ m(r, g) + o(T (r, f))
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holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. Combine
this with (18), for (u, v) ̸= (0, 0), we have

T (r, f) ≤ m(r, g) + o(T (r, f)) ≤ m
(
r, euα+vβ

)
+ o(T (r, f))

= T
(
r, euα+vβ

)
+ o(T (r, f))(27)

holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. In view of
(22) and (27), we get

T (r, ϕp,q) = o(T (r, euα+vβ)), (u, v) ̸= (0, 0)

holds for all r /∈ E = E1 ∪ E2 with lm(E1) < ∞ and densE2 = 0. Then by
Lemma 2.7, we deduce that all coefficients of the exponential function in (21)

vanish identically, that is, ϕp,q = 0 for all p ∈ {0, 1, . . . , 2nm+ n(n+1)
2 } and q ∈

{0, 1, . . . , 2nm+ n(n+1)
2 }. It yields a contradiction to ϕn,0 ̸= 0. Consequently,

f = g holds on Cm.
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