
Bull. Korean Math. Soc. 60 (2023), No. 2, pp. 461–473

https://doi.org/10.4134/BKMS.b220190

pISSN: 1015-8634 / eISSN: 2234-3016

UNIQUENESS RESULTS ON MEROMORPHIC FUNCTIONS

AND THEIR DIFFERENCE OPERATORS SHARING

TARGETS WITH WEIGHT
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Abstract. Let f be a nonconstant meromorphic function of hyper-order
strictly less than 1, and let c ∈ C \ {0} such that f(z + c) ̸≡ f(z). We

prove that if f and its exact difference ∆cf(z) = f(z + c) − f(z) share

partially 0,∞ CM and share 1 IM, then ∆cf = f , where all 1-points
with multiplicities more than 2 do not need to be counted. Some similar

uniqueness results for such meromorphic functions partially sharing tar-
gets with weight and their shifts are also given. Our results generalize

and improve the recent important results.

1. Introduction

In the past decade, uniqueness questions of meromorphic functions and their
shifts or their difference operators sharing values have been well treated by
many authors with many important results (see [1, 6, 10, 12, 14, 15, 18, 19]).
Among them, there are results found by J. Heittokangas, R. Korhonen, I. Laine
and J. Rieppo [9], by S. Chen and W. Lin [3] or by S. Chen and A. Xu [4]. To
state their results and some related ones in this direction, first of all we recall
the following notations.

Let f be a nonconstant meromorphic function on complex plane C. We use
the standard notations of the Nevanlinna theory as given in [8,11,17]. We recall
that T (r, f) denotes the characteristic function of f . In particular, we denote
S(f) as the family of all meromorphic functions α such that T (r, α) = o(T (r, f))
as r → ∞ outside of a possible exceptional set of finite logarithmic measure.
Such function α is said to be a small function with respect to f.

As usual, the order ρ(f) and the hyper-order ρ2(f) of f are defined, respec-
tively, by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log+ log+ T (r, f)

log r
.
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For a positive integer k (maybe k = +∞) and a function a ∈ S(f) ∪ {∞},
we denote by Ek)(a, f) the set of zeros of f − a with multiplicity l ≤ k, where
a zero with multiplicity l is counted exactly l times in the set. The counting
function corresponding to Ek)(a, f) is denoted by Nk)

(
r, 1

f−a

)
. Similarly, we

also denote by N(k

(
r, 1

f−a

)
the counting function of those zeros of f − a whose

multiplicities are not less than k in counting the zeros of f − a. We mean that
Ek)(a, f) is the set of zeros of f − a with multiplicity l ≤ k, where a zero with
multiplicity l is counted only once in the set. The reduced counting functions
are denoted by Nk)

(
r, 1

f−a

)
and N (k

(
r, 1

f−a

)
. If k = +∞, we omit character

k) in the symbol.

Let f, g be two nonconstant meromorphic functions. If E(a, f) = E(a, g) we
say that f and g share a IM and if E(a, f) = E(a, f) we say that f and g share
a CM.

In 2011, Z. X. Chen and H. X. Yi, [5] proved a uniqueness theorem for a
transcendental meromorphic function f(z) and its first order exact difference
∆cf(z) = f(z+c)−f(z) with three shared values CM when the order of growth
ρ(f) is not an integer or infinite. They conjectured that the condition “order
of growth ρ(f) is not an integer or infinite” can be omitted. Later, J. Zhang
and L. Liao [20] partially answer this conjecture when f is a transcendental
entire function of finite order.

Theorem A ([20]). Let f be a transcendental entire function of finite order,
and a, b be two distinct constants. If ∆f(z) = f(z + 1) − f(z) (̸≡ 0) and f
share a, b CM, then ∆f = f . Furthermore, f must be of the following form
f(z) = 2zh(z), where h(z) is a periodic entire function with period 1.

In 2016, F. Lü and W. Lü [13] improved Theorem A from “entire function”
to “meromorphic function” and obtained a uniqueness result on meromorphic
function f of finite order sharing three values CM with its exact difference ∆cf .
Later, S. Chen [2] proved that this result still holds when the meromorphic
functions of hyper-order less than 1 share one value CM and share partially two
values CM. Here, the concept “partially shared value CM” of two meromorphic
functions f and g sharing value a means that E(a, f) ⊆ E(a, g).

Very recently, S. Chen and A. Xu [4] have been successful to improve Chen’s
result. They obtained the uniqueness theorem for f and its exact difference
∆cf with two shared values CM and one shared value IM as follows.

Theorem B ([4]). Let f be a nonconstant meromorphic function of hyper-order
ρ2(f) < 1 and c ∈ C\{0} such that f(z+c) ̸≡ f(z). If ∆cf(z) = f(z+c)−f(z)
and f(z) share 0,∞ CM and 1 IM, then ∆cf = f .

Shared values results related to a meromorphic function of finite order f(z)
and its shift f(z + c) were studied by J. Heittokangas et al. [9]. Later, these
results were improved for the case of meromorphic function f(z) of hyper-order
less then 1 by S. Chen and W. Lin [3].
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Theorem C ([3]). Let f be a meromorphic function of hyper-order ρ2(f) < 1,
let c ∈ C, and let a1, a2, a3 ∈ S(f)∪{∞} be three distinct periodic functions with
period c. If f(z) and f(z+ c) share a1, a2 CM and a3 IM, then f(z) = f(z+ c)
for all z ∈ C.

In this article, our aim is to extend and improve the above mentioned theo-
rems from considering the partially shared values and omitting the zeros whose
multiplicities are greater than a certain value. Before giving our results, we
have the following definition.

Definition. We say that two meromorphic functions f and g share value a ∈
S(f) ∩ S(g) ∪ {∞} IM with weight k if Ek)(a, f) = Ek)(a, g). If Ek)(a, f) ⊆
Ek)(a, g), then f and g is said to share partially a IM with weight k.

First of all, we obtain the conclusion for Theorem B when all 1-points with
multiplicities more than 2 do not need to be counted. This is a great improve-
ment of that theorem. Note that the proof of Theorem B is quite long and
complicated. Here, we use a simple method which is very different from those
of that theorem.

Theorem 1.1. Let f be a nonconstant meromorphic function of hyper-order
ρ2(f) < 1 and let c ∈ C\{0} such that f(z+ c) ̸≡ f(z). Assume that ∆cf(z) =
f(z + c)− f(z) and f(z) share partially 0,∞ CM and share 1 IM with weight
k, i.e.,

E(0, f) ⊆ E(0,∆cf), E(∞, f) ⊇ E(∞,∆cf)

and
Ek)(1, f) = Ek)(1,∆cf).

If k ≥ 2, then ∆cf(z) = f(z) for all z ∈ C.

When f is an entire function, we obtain directly the first conclusion of The-
orem A from Theorem 1.1 when ∆cf and f share partially 0 CM and sharing
1 IM, in which we do not need to count all 1-points with multiplicities more
than 2. This result improves strongly Theorem A. However, in this situation
we are able to prove a better result than that. Here, we only need to consider
the 1-points with multiplicity 1.

Theorem 1.2. Let f be a nonconstant entire function of hyper-order ρ2(f) < 1
and let c ∈ C \ {0} such that f(z + c) ̸≡ f(z). If ∆cf(z) = f(z + c)− f(z) and
f(z) share partially 0 CM and share 1 IM with weight 1, then ∆cf(z) = f(z)
for all z ∈ C.

Naturally, we are interested in finding what happens in details when the
shared value IM in Theorem C has weight k.

Theorem 1.3. Let f be a nonconstant meromorphic function of hyper-order
ρ2(f) < 1 and let c ∈ C \ {0}. Assume that f(z) and its shift fc(z) = f(z + c)
share partially 0,∞ CM and share partially 1 IM with weight k, i.e.,

E(0, f) ⊆ E(0, fc), E(∞, f) ⊇ E(∞, fc)
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and

Ek)(1, f) ⊆ Ek)(1, fc).

If k ≥ 3, then fc(z) = f(z) or fc(z) = −f(z) for all z ∈ C.

The case of fc(z) = −f(z) can occur, as is shown by the following example.

Example 1.4. Let f(z) = sin3 z+3 sin z
3 sin2 z+1

and c = π. Obviously, f(z) and its

shift share 0,∞ CM with its shift f(z + π) = −f(z). It is easy to see that
(sin z − 1)3 = 0 is equivalent to f(z) = 1 and (sin z + 1)3 = 0 is equivalent to
fπ(z) = 1. Thus, E5)(1, f(z)) = E5)(1, fπ(z) = ∅. The assumptions of Theorem
1.3 are fully satisfied and here, we see that fπ(z) = −f(z) for all z ∈ C.

When k = ∞, we obtain the following corollary which can be considered as
a refinement of Theorem C.

Corollary 1.5. Let f be a nonconstant meromorphic function of of hyper-
order ρ2(f) < 1, let c ∈ C\{0} and let a1, a2, a3 ∈ S(f)∪{∞} be three distinct
periodic functions with period c. If f(z) and its shift fc(z) = f(z + c) share
partially a1, a2 CM and share partially a3 IM, i.e.,

E(a1, f) ⊆ E(a1, fc), E(a2, f) ⊇ E(a2, fc)

and

E(a3, f) ⊆ E(a3, fc),

then fc(z) = f(z) for all z ∈ C.

When f is an entire function, we obtain the following.

Theorem 1.6. Let f be a nonconstant entire function of of hyper-order ρ2(f) <
1 and let c ∈ C \ {0}. If f and fc share partially 0 CM and share partially 1
IM with weight 1, then fc(z) = f(z) or fc(z) = −f(z) for all z ∈ C.

Similar to the example above, we show that the case of fc(z) = −f(z) could
be occurred as follows.

Example 1.7. Consider the entire function f(z) = sin z and c = π. Obviously,
this function and its shift fπ(z) = −f(z) share 0 CM and share 1 IM with weight
1 since E1)(1, f) = E1)(1, fπ) = ∅.

We would like to emphasize that in the situation of Theorem 1.6, the case
of the entire function fc(z) = −f(z) could not happen only when Ek)(1, f) ⊆
Ek)(1, fc) with k ≥ 2 by [14, Corollary 1.2]. Moreover, for any k (k ≥ 3),
we can find a meromorphic function f such that fπ = −f satisfying fully the
assumptions of Theorem 1.3 by the same way as in Example 1.4.
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2. Some lemmas

Lemma 2.1 ([7]). Let f be a nonconstant meromorphic function and c ∈ C.
If f is of finite order, then

m
(
r,
f(z + c)

f(z)

)
= O

(
log r

r
T (r, f)

)
for all r outside of a subset E zero logarithmic density. If the hyper-order ρ2(f)
of f is less than one, then for each ϵ > 0, we have

m
(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ρ2(f)−ϵ

)
for all r outside of a subset finite logarithmic measure.

Lemma 2.2 ([7]). Let f(z) be a nonconstant meromorphic function of hyper-
order ρ2(f) < 1, and c ∈ C \ {0}. Then

m
(
r,
∆cf

f

)
= m

(
r,
f(z + c)− f(z)

f(z)

)
= S1(r, f),

where S1(r, f) = o(T (r, f) for all r outside of a set of finite logarithmic measure.

Lemma 2.3 ([7]). Let T : R+ → R+ be a non-decreasing continuous function,
and let s ∈ (0,+∞) such that hyper-order of T is strictly less than one, i.e.,

ρ2 = lim sup
r→∞

log+ log+ T (r)

log r
< 1,

then

T (r + s) = T (r) + o

(
T (r)

r1−ρ2−ϵ

)
,

where ϵ > 0 and r → ∞ outside a subset of finite logarithmic measure.

Lemma 2.4 ([7, Theorem 2.1]). Let c ∈ C, and let f be a meromorphic function
of hyper-order < 1 such that ∆cf ̸≡ 0. Let q ≥ 2 and a1(z), . . . , aq(z) be distinct
meromorphic periodic small functions of f with period c. Then

m(r, f) +

q∑
k=1

m
(
r,

1

f − ak

)
≤ 2T (r, f)−Npair(r, f) + S1(r, f),

where

Npair(r, f) = 2N(r, f)−N(r,∆cf) +N
(
r,

1

∆cf

)
.

Lemma 2.5 ([16]). Let f be a nonconstant meromorphic function on C. Let
a1, a2, . . . , aq (q ≥ 3) be q distinct small meromorphic functions of f on C.
Then the following holds

(q − 2)T (r, f) ≤
q∑

i=1

N
(
r,

1

f − ai

)
+ S(r, f),

where S(r, f) = o(T (r, f)) for all r ∈ [1,∞) outside a finite Borel measure set.
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Lemma 2.6 ([17, Lemma 5.1]). If f is a nonconstant periodic meromorphic,

then ρ(f) ≥ 1 and µ(f) ≥ 1, where µ(f) = lim inf
r→∞

log+ T (r,f)
log r is the lower order

of f.

Lemma 2.7 ([17, Theorem 1.45]). Suppose that h(z) is a nonconstant entire
function and f(z) = eh(z), then ρ2(f) = ρ(h).

3. Proof of Theorem 1.1

Assume on the contrary that ∆cf ̸≡ f . By the assumption E(0, f) ⊆
E(0,∆cf), we have

N
(
r,

1

f

)
≤ N

(
r,

1

∆cf

)
.

By the First main theorem and Lemma 2.2, we obtain

T (r, f) = T
(
r,

1

f

)
+O(1)

= m
(
r,

1

f

)
+N

(
r,

1

f

)
+O(1)

≤ m
(
r,
∆cf

f

)
+m

(
r,

1

∆cf

)
+N

(
r,

1

∆cf

)
+O(1)

= T (r,∆cf) + S1(r, f).

On the other hand, by Lemma 2.3, we have

T (r,∆cf) ≤ T (r, fc) + T (r, f) +O(1) ≤ 2T (r, f) + S1(r, f),

where fc(z) := f(z + c). These imply that

T (r, f) = T (r,∆cf) + S1(r, f),

and hence S(r) := S1(r, f) = S1(r,∆cf) which implies ρ2(∆cf) = ρ2(f) < 1.
We set

(3.1) h =
∆cf

f
.

Then by Lemma 2.2 again, we have

m
(
r, h

)
= S(r).

The assumptions E(0, f) ⊆ E(0,∆cf) and E(∞, f) ⊇ E(∞,∆cf) imply that
h is an entire function and hence h is a small function with respect to f .

Since the assumption Ek)(1, f) = Ek)(1,∆cf), it is easy to see that

(3.2) Nk)

(
r,

1

f − 1

)
= Nk)

(
r,

1

∆cf − 1

)
≤ N

(
r,

1

h− 1

)
= S(r).

From (3.1), we get

fc = (h+ 1)f.
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It is easy to see that S1(r, fc) = S1(r, f) = S(r). By Lemma 2.3 again, we have

Nk)

(
r,

1

fc − 1

)
≤ Nk)

(
r + |c|, 1

f − 1

)
= Nk)

(
r,

1

f − 1

)
+ o

(
Nk)

(
r,

1

f − 1

))
≤ Nk)

(
r,

1

f − 1

)
+ S1(r, f).

By applying this inequality to f = (fc)−c, we obtain

Nk)

(
r,

1

f − 1

)
= Nk)

(
r,

1

(fc)−c − 1

)
≤ Nk)

(
r,

1

fc − 1

)
+ S1(r, f) = S1(r, f).

Combining these inequalities and (3.2), we get

(3.3) Nk)

(
r,

1

f − 1

)
= Nk)

(
r,

1

fc − 1

)
+ S1(r, f) ≤ S(r).

Then, we have

(3.4)

Nk)

(
r,

1

f − 1
h+1

)
= Nk)

(
r,

1
1

h+1 (fc − 1)

)
= Nk)

(
r, h+ 1

)
+Nk)

(
r,

1

fc − 1

)
≤ S(r).

On the other hand, also from (3.2), we get

(3.5)

Nk)

(
r,

1

f − 1
h

)
= Nk)

(
r,

1
1
h (∆cf − 1)

)
= Nk)

(
r, h

)
+Nk)

(
r,

1

∆cf − 1

)
≤ S(r).

Then, since (3.3) and (3.5), we get

Nk)

(
r,

1

fc − (h+ 1)

)
= Nk)

(
r,

1

(h+ 1)(f − 1)

)
= Nk)

(
r,

1

h+ 1

)
+Nk)

(
r,

1

f − 1

)
≤ S(r),
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and

Nk)

(
r,

1

fc − h+1
h

)
= Nk)

(
r,

1

(h+ 1)(f − 1
h )

)
= Nk)

(
r,

1

h+ 1

)
+Nk)

(
r,

1

f − 1
h

)
≤ S(r).

Replacing f in (3.3) by f − h−c and f − 1
h−c

and using two inequalities above,

we have

(3.6) Nk)

(
r,

1

f − h−c − 1

)
= Nk)

(
r,

1

fc − h− 1

)
+ S(r) ≤ S(r),

and

(3.7) Nk)

(
r,

1

f − 1
h−c

− 1

)
= Nk)

(
r,

1

fc − 1
h − 1

)
+ S(r) ≤ S(r).

Obviously, a1 = 1, a2 = 1
h+1 , a3 = 1

h are distinct and a4 = h−c+1, a5 = 1
h−c

+1

are distinct too.
If a4 = a2, it is easy to see that − 1

h = 1
h−c

+ 1 = a5. This implies that

a5 ̸= a3 since h ̸= ±1.
If a4 = a3, we also have 1

hh−c
= 1

h−c
+1 = a5. This yields that a5 ̸= a2 since

h ̸= 0.
Therefore, there exist four distinct elements in the set {a1, . . . , a5}, for in-

stance aj1 , aj2 , aj3 , aj4 . So, by applying Lemma 2.5 to these functions and to-
gether this with (3.2)-(3.7), we get

2T (r, f) ≤
4∑

i=1

N
(
r,

1

f − aji

)
+ S(r)

=

4∑
i=1

(
Nk)

(
r,

1

f − aji

)
+N (k+1

(
r,

1

f − aji

))
+ S(r)

≤ 1

k + 1

4∑
i=1

N
(
r,

1

f − aji

)
+ S(r)

≤ 4

k + 1
T
(
r, f

)
+ S(r).

Letting r → +∞, we obtain 1 ≤ 2
k+1 , i.e., k ≤ 1. This is a contradiction.

Therefore, we must have ∆cf = f. The proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2

Similar to the proof of Theorem 1.1, we assume that ∆cf ̸= f . Then,

h :=
∆cf

f
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must be a small function with respect to f and fc = (h+ 1)f and

N1)

(
r,

1

f − 1

)
= S(r), N1)

(
r,

1

f − 1
h+1

)
= S(r)

and

N1)

(
r,

1

f − 1
h

)
= S(r).

Since the assumption that f is entire, applying Lemma 2.5 to a1 = 1, a2 =
1

h+1 , a3 = 1
h , a4 = ∞, we obtain

2T (r, f) ≤
3∑

i=1

N
(
r,

1

f − ai

)
+N(r, f) + S(r)

≤
3∑

i=1

N1)

(
r,

1

f − ai

)
+

3∑
i=1

N (2

(
r,

1

f − ai

)
+ S(r)

≤ 3

2
T
(
r, f

)
+ S(r).

This is a contradiction. Therefore, ∆cf = f. The proof of Theorem 1.2 is
completed.

5. Proof of Theorem 1.3

Assume that fc ̸≡ f . Put

h =
fc
f
,

then h ̸≡ 1. By Lemma 2.1, we have m(r, h) = S(r). Since the assumption
E(0, f) ⊆ E(0, fc) and E(∞, f) ⊇ E(∞, fc), it is easy to see that h is an entire
function. Hence, h is small with respect to f. By the same arguments as in the
proof of Theorem 1.1, we obtain

Nk)

(
r,

1

fc − 1

)
= Nk)

(
r,

1

f − 1

)
+ S(r) ≤ S(r),

Nk)

(
r,

1

f − 1
h

)
= Nk)

(
r,

1
fc
h − 1

h

)
≤ Nk)

(
r,

1

fc − 1

)
≤ S(r),

Nk)

(
r,

1

fc − h

)
= Nk)

(
r,

1

h(f − 1)

)
≤ Nk)

(
r,

1

f − 1

)
≤ S(r).

Similar to (3.3), we have

Nk)

(
r,

1

f − h−c

)
≤ S(r).
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Case 1. h−c ̸= 1
h . Applying Lemma 2.5 to 1, 1

h , h−c, we obtain

T (r, f) ≤ N
(
r,

1

f − 1

)
+N

(
r,

1

f − 1
h

)
+N

(
r,

1

f − h−c

)
+ S(r)

≤ 3

k + 1
T
(
r, f

)
+ S(r).

This implies that 1 ≤ 3
k+1 , i.e., k ≤ 2 which is a contradiction. This case can

not happen.
Case 2. h−c =

1
h . This implies that

(5.1) h · hc = 1

and hence the entire h can not have any zeros. By Hadamard’s factorization
theorem, h must be in the form h = eτ , where τ is an entire function. Since h
is a small function with respect to f , ρ2(h) ≤ ρ2(f) < 1. Then by Lemma 2.7,
we get

(5.2) ρ(τ) = ρ2(h) < 1.

On the other hand, since (5.1) we have eτ · eτc = 1 which implies that

(5.3) τ ′c = −τ ′.

From this, we get τ ′2c = τ ′, and hence τ ′ is a periodic entire function. By Lemma
2.6, if τ ′ is a nonconstant function, then ρ(τ) ≥ 1 which is a contradiction to
(5.2). Therefore, τ ′ must be a constant and hence τ ′ ≡ 0 since (5.3). This
implies that τ and hence h must be a constant. By (5.1), we obtain h2 = 1
which yields h = ±1.

From two cases above, we obtain fc(z) = f(z) or fc(z) = −f(z) for all z ∈ C.
The proof of Theorem 1.3 is completed.

6. Proof of Corollary 1.5

In the each of the following cases, we always have T (r, g) = T (r, f)+S1r, f .

If a1, a2, a3 ∈ S(f), then we set g = f−a1

f−a2
· a3−a2

a3−a1
. This implies that h = gc

g =
fc−a1

fc−a2
· f−a2

f−a1
.

If a1 = ∞, then we set g = a3−a2

f−a2
. This implies that h = gc

g = f−a2

fc−a2
.

If a2 = ∞, then we set g = f−a1

a3−a1
. This implies that h = gc

g = fc−a1

f−a1
.

If a3 = ∞, then we set g = f−a1

f−a2
. This implies that h = gc

g = fc−a1

fc−a2
· f−a2

f−a1
.

It is easy to see from the assumptions that h is a entire function. This implies
that E(0, g) ⊆ E(0, gc) and E(∞, g) ⊇ E(∞, gc). By simple calculation, we also
get

(6.1) E(1, g) ⊆ E(1, gc).

Applying Theorem 1.3, we obtain gc = g or gc = −g. If the second case
happens, then ∆cg = −2g. It follows from (6.1) that 1 is a Picard value. By
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Lemma 2.4, we get

m(r, g) +m
(
r,
1

g

)
+m

(
r,

1

g − 1

)
≤ 2T

(
r, g

)
−N

(
r, g

)
−N

(
r,
1

g

)
+ S(r),

which implies that

T (r, g) ≤ N
(
r,

1

g − 1

)
+ S(r) = S(r).

This is impossible. Then, the first case must happen and hence fc(z) = f(z)
for all z ∈ C. The proof of Corollary 1.5 is completed.

7. Proof of Theorem 1.6

Assume that fc ̸≡ ±f and take h as in the proof of Theorem 1.3. Based on
the proof of this theorem, we see that h−c = 1

h can not happen. Hence, by

applying Lemma 2.5 to 1, 1
h , h−c,∞, we obtain

2T (r, f) ≤ N
(
r,

1

f − 1

)
+N

(
r,

1

f − 1
h

)
+N

(
r,

1

f − h−c

)
+N

(
r, f

)
+ S(r)

≤ 3

2
T
(
r, f

)
+ S(r),

which is impossible. So we have fc(z) = f(z) or fc(z) = −f(z) for all z ∈ C.
The proof of Theorem 1.6 is completed.
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