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PRIMARY DECOMPOSITION OF SUBMODULES OF A FREE

MODULE OF FINITE RANK OVER A BÉZOUT DOMAIN

Fatemeh Mirzaei and Reza Nekooei

Abstract. Let R be a commutative ring with identity. In this paper,

we characterize the prime submodules of a free R-module F of finite rank
with at most n generators, when R is a GCD domain. Also, we show that

if R is a Bézout domain, then every prime submodule with n generators
is the row space of a prime matrix. Finally, we study the existence of

primary decomposition of a submodule of F over a Bézout domain and

characterize the minimal primary decomposition of this submodule.

1. Introduction

Throughout this article, all rings are assumed to be commutative with iden-
tity and F denotes a free R-module of finite rank n (n ≥ 2). Let M be an
R-module. A proper submodule N of M is called a prime submodule if, for
r ∈ R, m ∈ M and rm ∈ N , we have m ∈ N or r ∈ (N : M), where
(N : M) := {r ∈ R | rM ⊆ N}. Note that, if N is a prime submodule of an
R-module M , then (N : M) is a prime ideal of R. We use the notation R(n)

for R⊕ · · · ⊕R︸ ︷︷ ︸
n-times

.

Let R be a commutative domain and K be the quotient field of R. The
integral domain R is a valuation domain if for every 0 ̸= x ∈ K, either x ∈ R
or x−1 ∈ R. Equivalently, the set of all ideals of R is totally ordered by
inclusion. An integral domain R is a Prüfer domain if each non-zero finitely
generated ideal of R is invertible. It can be shown that an integral domain R
is a Prüfer domain if and only if RP is a valuation domain for every maximal
ideal P of R, see [2]. An integral domain R is a GCD domain if any two
elements of R have a greatest common divisor. A Bézout domain is an integral
domain in which the sum of two principal ideals is again principal. Note that
a Bézout domain is a GCD domain, see [6, 7]. Any PID is a Bézout domain
but a Bézout domain need not be a PID or a UFD. For example, let R be the
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ring of entire complex valued functions. Then R is a Bézout domain and so is
a GCD domain. Since the irreducible elements of R are linear polynomials and
there are functions with infinitely many roots, R is not a UFD, see [8, Fact
2.3]. Also, note that a GCD domain is not necessarily a UFD. For example,
suppose that R is the ring of algebraic integers. Then, R is a Bézout domain
and hence is a GCD domain. For every non-zero and non-unit element a ∈ R,
we have a =

√
a
√
a. But

√
a is a non-unit in R and hence R is not a UFD.

Moreover, dim(R) = dim(Z) = 1, see [6, Theorem 102].
Prime submodules of a module over a commutative ring have been studied

in [1,9,10,13,14] and prime submodules of a finitely generated free module over
a PID have been studied in [3, 5]. The authors in [3, 5] have described prime
submodules of a free module F = R(n) (n ≥ 2) with at most n generators over
a UFD. They have characterized the prime submodules of F = R(n) (n ≥ 2),
over a PID. In [11, 12], we have extended some of these results to Dedekind,
Prüfer and valuation domains.

In this paper, we extend some results obtained in [3–5] to a Bézout domain
and a GCD domain. Also, we study the existence of primary decomposition of
a submodule of F , where R is a Bézout domain and characterize its minimal
primary decomposition.

2. Prime submodules of F = R(n) with at most n generators over a
Bézout domain R

In this section, we characterize the prime submodules of F = R(n) with at
most n generators, when R is a Bézout domain. Also, we show that when R is
a Bézout domain, every prime submodule with n generators is the row space
of a prime matrix.

The following notations and results obtained from [11], will be frequently
used in this article. Let F := R(n) and X := (xi1, . . . , xin) ∈ F for some
xij ∈ R (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ m ≤ n). We put

Bm×n := [X1 · · ·Xm] =


x11 x12 · · · x1n
x21 x22 · · · x2n

. . .

xm1 xm2 · · · xmn

 ∈Mm×n(R).

Thus the jth row of the matrix [X1 · · ·Xm] consists the components of Xj . We
use N := ⟨B⟩ to denote the non-zero submodule of F generated by the rows of
B. Also B(j1, . . . , jk) ∈ Mm×k(R) to denote the submatrix of B consisting of
the columns j1, . . . , jk ∈ {1, . . . , n}. Setting ψ := {Xi = (xi1, . . . , xin) ∈ F | i ∈
Ω}, where Ω(⊆ N) is an index set, we have:

Lemma 2.1. Let R be a GCD domain, F = R(n) and B = [X1 · · ·Xm] ∈
Mm×n(R) (m < n) with rankB = m. Let d be a GCD of determinants of all
m×m submatrices of B. Let X ∈ A = {X ′ = (x1, . . . , xn) ∈ F | detβ(i1, . . . ,
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im+1) = 0 for every i1, . . . , im+1 ∈ {1, . . . , n}}, where β = [X ′X1 . . . Xm].
Then X = 1

d (r1, . . . , rm)B for some ri ∈ R (1 ≤ i ≤ m).

Proof. Suppose that {Bi(ji1, . . . , jim)}ki=1 is the family of all m×m submatri-
ces of B with detBi(ji1, . . . , jim) ̸= 0. Since rankB = m, k ≥ 1. Let k = 1.
Then d = detB1 and by [3, Lemma 2.2] other columns of B are zero. If X =
(x1, . . . , xn) ∈ A, then by [11, Lemma 1.5] (detB1)(x1, . . . , xn) = (r1, . . . , rm)B
for some ri ∈ R (1 ≤ i ≤ m). So detB1(xj11 , . . . , xj1m) = (r1, . . . , rm)B1

and hence detB1(xj11 , . . . , xj1m)B′
1 = (r1, . . . , rm) detB1, where B

′
1 is the ad-

joint matrix of B1. It follows that (xj11 , . . . , xj1m)B′
1 = (r1, . . . , rm) and so

(xj11 , . . . , xj1m) detB1 = (r1, . . . , rm)B1.
Thus (xj11 , . . . , xj1m) = 1

d (r1, . . . , rm)B1. Since xi = 0 for 1 ≤ i ≤ m,

i ̸= j1k (1 ≤ k ≤ m), we have X = 1
d (r1, . . . , rm)B. Now assume that

k > 1 and let d1 = detB1 and di+1 = gcd(di,detBi+1) (1 ≤ i ≤ k − 1).
Then dk = d. Suppose that X = (x1, . . . , xn) ∈ A. Then by [11, Lemma
2.5] (detB1)(x1, . . . , xn) = (r1, . . . , rm)B for some ri ∈ R (1 ≤ i ≤ m). By
induction on t (1 ≤ t ≤ k − 1), we show that there exist rt1, . . . , rtm ∈ R
such that (xji1 , . . . , xjim) = 1

dt+1
(rt1, . . . , rtm)Bi for all 1 ≤ i ≤ t + 1. Since

(detB1)(x1, . . . , xn) = (r1, . . . , rm)B for some ri ∈ R (1 ≤ i ≤ m), we have
(detB1)(xji1 , . . . , xjim) = (r1, . . . , rm)Bi for all i (1 ≤ i ≤ k). It follows
that (detB1)(xj21 , . . . , xj2m)B′

2 = (r1, . . . , rm)B2. Since (xj11 , . . . , xj1m)B′
1 =

(r1, . . . , rm), so (detB1)(xj21 , . . . , xj2m)B′
2 = (xj11 , . . . , xj1m)B′

1 detB2. We

know that d2 = gcd (detB1,detB2) and (detB1

d2
, detB2

d2
) = 1.

Then (xj11 , . . . , xj1m)B′
1 = (r11, . . . , r1m)detB1

d2
for some r1i ∈ R (1 ≤ i ≤

m). Hence (xj11 , . . . , xj1m) = 1
d2
(r11, . . . , r1m)B1. With substituting (xj11 , . . . ,

xj1m) in (detB1)(xj21 , . . . , xj2m)B′
2 = (xj11 , . . . , xj1m)B′

1 detB2, we have (xj21 ,

. . . , xj2m)B′
2=(r1, . . . , rm)detB2

d2
and hence (xj21 , . . . , xj2m)= 1

d2
(r1, . . . , rm)B2.

Therefore the assertion is true for t = 1. Now suppose that the assertion
is true for some t (1 ≤ t < k − 1). With similar to the way of t = 1, we
have (detB1)(xj(t+2)1

, . . . , xj(t+2)m
)B′

t+2 = (xj11 , . . . , xj1m)B′
1 detBt+2. Since

detB1 ̸=0 and by induction hypothesis, we have dt+1(xj(t+2)1
, . . . , xj(t+2)m

)B′
t+2

= (rt1, . . . , rtm) detBt+2. Since gcd(detBt+2

dt+2
, dt+1

dt+2
) = 1, we have

(xj(t+2)1
, . . . , xj(t+2)m

)B′
t+2 = (r(t+1)1, . . . , r(t+1)m)

detBt+2

dt+2
.

It follows that (xj(t+2)1
, . . . , xj(t+2)m

) = 1
dt+2

(r(t+1)1, . . . , r(t+1)m)Bt+2 for some

r(t+1)i ∈ R (1 ≤ i ≤ m).
With substituting (xj(t+2)1

, . . . , xj(t+2)m
) in dt+1(xj(t+2)1

, . . . , xj(t+2)m
)B′

t+2 =

(rt1, . . . , rtm) detBt+2, we have (rt1, . . . , rtm) = dt+1

dt+2
(r(t+1)1, . . . , r(t+1)m).

So by the induction hypothesis, (xji1 , . . . , xjim) = 1
dt+1

(rt1, . . . , rtm)Bi =
1

dt+2
(r(t+1)1, . . . , r(t+1)m)Bi for all 1 ≤ i ≤ t + 2. Hence by induction, the

assertion is true for all t (1 ≤ t ≤ k−1). Let t = k−1. Then (xji1 , . . . , xjim) =
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1
dk
(r(k−1)1, . . . , r(k−1)m)Bi for all i (1 ≤ i ≤ k). Therefore by [3, Lemma 2.2],

X = 1
dk
(r(k−1)1, . . . , r(k−1)m)B for some r(k−1)i ∈ R (1 ≤ i ≤ m). □

Theorem 2.2. Suppose that R is a GCD domain and F = R(n) (n ≥ 2).
Let B = [X1 · · ·Xm] ∈ Mm×n(R) for some Xi ∈ F (1 ≤ i ≤ m,m < n) and
rankB = m. Then N := ⟨B⟩ is a prime submodule of F if and only if a GCD
of the determinants of all m×m submatrices of B is unit.

Proof. Let the GCD of the determinants of all m×m submatrices of B be unit.
Put M := {X = (x1, . . . , xn) ∈ F | detβ(i1, . . . , im+1) = 0 for every i1, . . . ,
im+1 ∈ {1, . . . , n}}, where β = [XX1 · · ·Xm]. Since Xi ∈ M (1 ≤ i ≤ m),
we have N ⊆ M . Now suppose that X ∈ M . Then by Lemma 2.1, X ∈
N = ⟨B⟩. Thus N = M and by [11, Corollary 1.9], N is a prime submod-
ule of F . Now let N = ⟨B⟩ be a prime submodule of F and d be a GCD
of all m × m submatrices of B. Let d be a non-unit. Since d is a GCD
of all m × m submatrices of B and by [3, Lemma 2.2], there exists a sub-
matrix B(j1, . . . , jm) of B with j1 < j2 < · · · < jm of {1, . . . , n} such that
detB(j1, . . . , jm) = dr and gcd(r, d) = u for some r ∈ R and unit u ∈ R. Now
let B(j1, . . . , jm) = (tij) and let B′(j1, . . . , jm) = (t′ij) be the adjoint matrix of
B(j1, . . . , jm). Fix i (1 ≤ i ≤ m) and consider (x1, . . . , xn) = (t′i1, . . . , t

′
im)B ∈

N . Since B′(j1, . . . , jm)B(j1, . . . , jm) = detB(j1, . . . , jm)Im, we have xji =
detB(j1, . . . , jm) and xjk = 0 (1 ≤ k ≤ m, k ̸= i). Also xj = I detCj , where
Cj = B(j1, . . . , ji−1, j, ji+1, . . . , jm) for all j ∈ {1, . . . , n} \ {j1, . . . , jm}. Since
detCj ∈ ⟨detB(j1, . . . , jm)⟩, we have j ∈ {1, . . . , n} \ {j1, . . . , jm}. Then d | xj
and hence (x1

d , . . . ,
xn

d ) ∈ F . Note that d(x1

d , . . . ,
xn

d ) ∈ N . Since N is prime,
dF ⊆ N or (x1

d , . . . ,
xn

d ) ∈ N .
If dF ⊆ N , then (0, . . . , 0, d, 0, . . . , 0) ∈ N with d as the j0th component

for some j0 ∈ {1, . . . , n} \ {j1, . . . , jm}. Hence there are rj ∈ R (1 ≤ j ≤
m) such that (0, . . . , 0, d, 0, . . . , 0) = (r1, . . . , rm)B(j1, . . . , jm). It follows that
rj detB(j1, . . . , jm) = 0 (1 ≤ j ≤ m) and hence rj = 0 (1 ≤ j ≤ m). Thus
detB(j1, . . . , jm) = 0, which is a contradiction. So (x1

d , . . . ,
xn

d ) ∈ N . Hence
there are sj ∈R (1 ≤ j ≤ m) such that (x1

d , . . . ,
xn

d )=(s1, . . . , sm)B(j1, . . . , jm).
It follows that (t′i1, . . . , t

′
im)B(j1, . . . , jm) = (x1, . . . , xn) = d(s1, . . . , sm)

B(j1, . . . , jm). So (t′i1, . . . , t
′
im)B(j1, . . . , jm) = d(s1, . . . , sm)B(j1, . . . , jm).

Thus t′ij detB(j1, . . . , jm) = dsj detB(j1, . . . , jm) and t′ij = dsj (1 ≤ j ≤
m). Therefore detB′(j1, . . . , jm) = dms for some 0 ̸= s ∈ R. But detB′(j1, . . . ,
jm) = (detB(j1, . . . , jm))m−1 = (dr)m−1. Hence dm−1rm−1 = dms and
gcd(d, r) = u. It follows that d | rm−1, which is a contradiction. □

Theorem 2.3. Let R be a GCD domain and F = R(n) (n ≥ 2). Let B ∈
Mn×n(R) and rankB = n. Suppose that detB has a decomposition into distinct
prime elements of R. Then N = ⟨B⟩ is prime in F if and only if there exist
an irreducible element p ∈ R, a unit u ∈ R and a positive integer α ≤ n such
that detB = upα and a GCD of entries of B′ is pα−1.
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Proof. Since detB has a prime decomposition and by [12, Lemma 1.1] and
[11, Lemma 1.1], the proof is similar to [3, Theorem 2.5(ii)]. □

Proposition 2.4. Let R be a Bézout domain and 0 ̸= P = ⟨p⟩ be a prime ideal
of R. Then P is a maximal ideal of R.

Proof. Let x ∈ R − P and d := gcd(p, x). Then p = ad and x = bd for some
a, b ∈ R. Since p = ad ∈ P , d ∈ P or a ∈ P . If d ∈ P , then x ∈ P , which is a
contradiction. If a ∈ P , then we have a = ps for some s ∈ R. So p = ad = psd
and hence 1 = sd. Therefore d is a unit. So there exist m,n ∈ R such that
1 = pm + xn and hence 1 + P = xn + P . Thus R/P is a field and P is
maximal. □

Theorem 2.5. Suppose R is a Bézout domain and F = R(n) (n ≥ 2). Let
B ∈ Mn×n(R) with rankB = n. Then N = ⟨B⟩ is prime in F if and only if
there exist a maximal ideal P = ⟨p⟩ of R and a positive integer α ≤ n such that
⟨detB⟩ = Pα and the ideal J ′ of R generated by entries of B′ is Pα−1, where
B′ is the adjoint matrix of B.

Proof. Since R is a Bézout domain, R is a Prüfer domain [6, Theorem 62].
Hence by [12, Theorem 3.2], [12, Proposition 2.2] and Proposition 2.4, the
proof is complete. □

The notion of prime matrix is introduced in [4]. Now we show that for a
Bézout domain R every finitely generated prime submodule of R(n) (n ≥ 2),
with n generators is the row space of a prime matrix.

Definition. Suppose R is a domain. Let m = ⟨p⟩ be a principal maximal ideal
of R for some p ∈ R. Let J = {j1, . . . , jα} be a subset of {1, . . . , n}. A matrix
B = (bij) ∈Mn×n(R) is said to be a p-prime matrix if it satisfies the following
conditions:

(i) B is upper triangular.
(ii) For all i, 1 ≤ i ≤ n, aii = p if i ∈ J and aii = 1 if i ̸∈ J .
(iii) For all i, j ∈ {1, . . . , n}, aij = 0 except possibly when i ̸∈ J and j ∈ J .

Sometimes we call J the set of integers associated with B and denote it by JB .
By (i) and (ii), it is clear that detB = pα.

We recall that for A ∈ Mn×s(R) and Y ∈ Mn×1(R), the augmented matrix
[A : Y ] is a matrix whose first n columns are the columns of the matrix A and
its last column is Y .

Lemma 2.6. Suppose R is a Bézout domain and m = ⟨p⟩ is a principal maxi-
mal ideal of R. Let s and n be positive integers such that s < n. Also, suppose
that A ∈ Mn×s(R), Y ∈ Mn×1(R) and X = [x1 · · ·xs]T ∈ Ms×1(R). Let
C ∈ Mn×(s+1)(R) be the augmented matrix [A : Y ]. If p does not divide the
determinant of at least one s× s submatrix of A, then the system of equations
AX ≡ Y (mod p) has a solution if and only if p divides the determinants of all
(s+ 1)× (s+ 1) submatrices of C.
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Proof. Suppose AX ≡ Y (mod p) has a solution and C0 is an (s+ 1)× (s+ 1)
submatrix of C. The proof is similar to [12, Lemma 2.6].

Now let p ∤ detAT (i1, . . . , is). By [11, Lemma 1.5(ii)], (detAT (i1, . . . , is))Y
T

∈ ⟨p⟩F + ⟨AT ⟩. Since detAT (i1, . . . , is) ̸∈ m, 1 = s(detAT (i1, . . . , is)) + rp for
some r, s ∈ R. Then Y T = s(detAT (i1, . . . , is))Y

T + rpY T ∈ ⟨p⟩F + ⟨AT ⟩ and
so the system of equations AX ≡ Y (mod p) has a solution. □

Theorem 2.7. Suppose R is a Bézout domain and m = ⟨p⟩ is a principal
maximal ideal of R. Let s, n and α be positive integers such that s ≤ n (1 ≤
α ≤ n) and A ∈ Ms×n(R). Then ⟨A⟩ ⊆ ⟨B⟩ for some p-prime matrix B ∈
Mn×n(R) with detB = pα if and only if p divides the determinants of all
(n− α+ 1)× (n− α+ 1) submatrices of A.

Proof. See [12, Theorem 2.7]. □

Proposition 2.8. Suppose R is a Bézout domain, n is a positive integer and
m = ⟨p⟩ is a principal maximal ideal of R. Let A ∈ Mn×n(R) and 1 ≤ α ≤ n
be the greatest integer such that pα | detA and pα−1 divides all entries of A′,
where A′ is the adjoint matrix of A. Then p divides the determinants of all
(n− α+ 1)× (n− α+ 1) submatrices of A.

Proof. Let C = (cij) be an (n− α+ 1)× (n− α+ 1) submatrix of A. Since R
is a Bézout domain, Rm is a valuation domain and p | detCm [12, Proposition
2.8], where Cm is a matrix with entries (Cm)ij =

cij
1 ∈ Rm. So detC

1 = p
1 · r

s
and s(detC) = pr for some r ∈ R, s ∈ R\m. Since s ̸∈ m, 1 = xs+py for some
x, y ∈ R. Then detC = xs(detC) + py(detC). It follows that p | det(C). □

Theorem 2.9. Suppose R is a Bézout domain and F = R(n) (n ≥ 2). Let
A ∈Mn×n(R). Then N = ⟨A⟩ is a prime submodule of F if and only if (N : F )
is a principal maximal ideal of R and N is the row space of a prime matrix.

Proof. Let N be a prime submodule of F . By Theorem 2.5, m = (N : F ) =
⟨p⟩ is a principal maximal ideal of R, ⟨detA⟩ = ⟨pα⟩ and the ideal J ′ of R
generated by entries of A′ is ⟨pα−1⟩, where A′ is the adjoint matrix of A.
So by Proposition 2.8 and Theorem 2.7, N ⊆ ⟨B⟩ for some prime matrix
B with detB = pα. Thus A = CB for some C ∈ Mn×n(R) and therefore
upα = detA = (detC)(detB) = (detC)pα. Thus det(C) = u and so C is
invertible. Hence C−1B = A. It follows that ⟨B⟩ ⊆ N = ⟨A⟩. Therefore
N = ⟨B⟩. Conversely by Theorem 2.5, the row space of every prime matrix is
a prime submodule. □

3. Primary Decomposition of submodules of a free module of finite
rank over a Bézout domain

In this section, we describe primary decomposition of submodules of a free
module of finite rank over a Bézout domain.
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Lemma 3.1. Suppose R is a Bézout domain and m = ⟨p⟩ is a principal max-
imal ideal of R. Let n, s and α be positive integers such that s < n. Also,
suppose that A ∈ Mn×s(R), Y ∈ Mn×1(R) and X = [x1 · · ·xs]T ∈ Ms×1(R).
Let C ∈Mn×(s+1)(R) be the augmented matrix [A : Y ]. If p does not divide the
determinant of at least one s× s submatrix of A, then the system of equations
AX ≡ Y (mod pα) has a solution if and only if pα divides the determinants of
all (s+ 1)× (s+ 1) submatrices of C.

Proof. The proof is similar to Lemma 2.6. □

Proposition 3.2. Let R be a domain, n be a positive integer and F = Rn

(n ≥ 2). Suppose that B ∈ Mn×n(R) and 0 ̸= detB has a decomposition into
distinct prime elements of R. Then ⟨B⟩ is a primary submodule of F if and
only if detB = upα for some unit u ∈ R, a prime element p ∈ R and a positive
integer α.

Proof. Suppose that detB = upα. Let r(x1, . . . , xn) ∈ ⟨B⟩ for some r ∈ R
and xi ∈ R (1 ≤ i ≤ n). By [11, Lemma 2.1], upα | r

∑n
i=1 xib

′
ij for every j

(1 ≤ j ≤ n). If p ∤ r, then we have upα |
∑n

i=1 xib
′
ij for every j (1 ≤ j ≤ n)

and again by [11, Lemma 2.1], (x1, . . . , xn) ∈ ⟨B⟩.
If p | r, then upα | rαb′ij for every i and j (1 ≤ i, j ≤ n). Again by [11, Lemma

2.1], (0, . . . , 0, rα, 0, . . . , 0) ∈ ⟨B⟩ with rα as the ith component (1 ≤ i ≤ n).
Then rαF ⊆ ⟨B⟩. Thus ⟨B⟩ is a primary submodule of F . Conversely, let
⟨B⟩ be primary. Assume that detB = rs for some non-unit relatively prime
elements r, s ∈ R. By [11, Lemma 2.1], r(0, . . . , 0, s, 0, . . . , 0) ∈ ⟨B⟩ with s as
the ith component (1 ≤ i ≤ n). Since ⟨B⟩ is primary, sF ⊆ ⟨B⟩ or rmF ⊆ ⟨B⟩
for some positive integer m. If sF ⊆ ⟨B⟩, then (detB) | sb′ij for every i

and j (1 ≤ i, j ≤ n). Thus (detB)n | sn det(B′) = sn(detB)n−1. It follows
that (detB) | sn, i.e., rs | sn and thus r | sn−1, which contradicts the fact
that r and s are relatively prime. Similarly, the case rmF ⊆ ⟨B⟩ implies that
(detB) | rmn. So s | rmn−1, which is a contradiction. We conclude that
detB = upα for some unit u ∈ R, a prime element p ∈ R and a positive integer
α. □

Let m ≤ n be positive integers and B ∈Mm×n(R). Suppose that t (1 ≤ t ≤
m), 1 ≤ i1 < · · · < it ≤ m and 1 ≤ j1 < · · · < jt ≤ n are some integers. Then

B
[
i1 ··· it
j1 ··· jt

]
denotes the determinant of the t × t submatrix of B consisting of

rows i1, . . . , it and columns j1, . . . , jt.

Theorem 3.3. Suppose R is a Bézout domain. Let m ≤ n be positive integers
and B ∈ Mm×n(R). Also, suppose that p ∈ R is a prime element and let α
be the greatest integer such that pα | B [ 1 ··· m

1 ··· m ]. Then there exists an upper
triangular matrix A ∈Mn×n(R) with detA = pα such that ⟨B⟩ ⊆ ⟨A⟩.

Proof. By Lemma 3.1, the proof is similar to [4, Theorem 2.4]. □



482 F. MIRZAEI AND R. NEKOOEI

Theorem 3.4. Let R be a Bézout domain and F = R(n). Let B ∈ Mn×n(R)

such that detB is non-unit and non-zero. Suppose that detB = pβ1

1 · · · pβt

t

is a decomposition of detB into distinct prime elements of R and βi ∈ N
(1 ≤ i, j ≤ t). Let Ak with detAk = pβk

k (1 ≤ k ≤ t) be the triangular matrix

in Theorem 3.3. Then
⋂t

k=1⟨Ak⟩ is a minimal primary decomposition of ⟨B⟩.

Proof. Since ⟨B⟩ ⊆ ⟨Ak⟩ for all k (1 ≤ k ≤ t), ⟨B⟩ ⊆
⋂t

k=1⟨Ak⟩. Take

an element (x1, . . . , xn) ∈
⋂t

k=1⟨Ak⟩. Then for all k (1 ≤ k ≤ t), we have

(x1, . . . , xn) ∈ ⟨Ak⟩. So (x1, . . . , xn)A
′
k = pβk

k (r1, . . . , rn) for some ri ∈ R (1 ≤
i ≤ n). Since B = CkAk for some Ck ∈Mn×n(R), we have p

βk

k (r1, . . . , rn)C
′
k =

(x1, . . . , xn)A
′
kC

′
k = (x1, . . . , xn)B

′. So pβk

k |
∑n

i=1 xib
′
ij for every j and k

(1 ≤ j ≤ n, 1 ≤ k ≤ t). Thus detB = pβ1

1 · · · pβt

t |
∑n

i=1 xib
′
ij for every j

(1 ≤ j ≤ n) and hence (x1, . . . , xn) ∈ ⟨B⟩. It follows that
⋂t

k=1⟨Ak⟩ ⊆ ⟨B⟩. So
⟨B⟩ =

⋂t
k=1⟨Ak⟩. Note that by Proposition 3.2, ⟨Ak⟩ is ⟨pk⟩-primary. Suppose

that
⋂t

i ̸=k=1⟨Ak⟩ ⊆ ⟨Ai⟩ for some i (1 ≤ i ≤ t). Then
√
(
⋂t

i̸=k=1⟨Ak⟩ : F ) ⊆√
(⟨Ai⟩ : F ) and so

⋂t
i ̸=k=1

√
(⟨Ak⟩ : F ) ⊆

√
(⟨Ai⟩ : F ). Since every ⟨Ak⟩ is a

⟨pk⟩-primary submodule, hence
⋂t

i̸=k=1⟨pk⟩ ⊆ ⟨pi⟩. It follows that ⟨pj⟩ ⊆ ⟨pi⟩,
which is a contradiction. □

Example 3.5. Let R be the ring of entire complex valued functions. By [8,
Fact 2.3], R is a Bézout domain and so is a GCD domain. Since the irreducible
elements of R are linear polynomials and there are functions with infinitely
many roots, R is not a UFD.

Let

(
x+2 x+2 0
x+2 x+3 x

x2(x+2) x x2

)
∈M3×3(R). We shall find a minimal primary decom-

position of ⟨B⟩. Since detB = x3(x + 2)2, by Theorem 3.3, there exist upper
triangular matrices1 a12 a13

0 1 a23
0 0 x3

 ,

x+ 2 a′12 a′13
0 1 a′23
0 0 x+ 2


such that 

(x+ 2)a13 ≡ 0 (mod x3)

(x+ 2)a13 + a23 ≡ x (mod x3)

x2(x+ 2)a13 + (−x3 − 2x2 + x)a23 ≡ x3 (mod x3)

and 
a′13 + (x+ 1)a′23 ≡ 0 (mod x+ 2)

a′13 + (x+ 2)a′23 ≡ x (mod x+ 2)

x2a′13 + (x− x2)a′23 ≡ x2 (mod x+ 2).

A solution for the above systems is

a13 = x3, a23 = −x4 − x3 + x, a′13 = 3x+ 4 and a′23 = −2.
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Hence

A1 =

1 0 x3

0 1 −x4 − x3 + x
0 0 x3

 , A2 =

x+ 2 0 3x+ 4
0 1 −2
0 0 x+ 2

 .

By Theorem 3.4, ⟨B⟩ = ⟨A1⟩
⋂
⟨A2⟩ is a minimal primary decomposition.
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