Acknowledgement
이 연구는 전남대학교 교내연구비, 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0011931, 광주 빛그린 산학융합지구 조성사업)을 받아 수행된 연구결과입니다.
References
- T. Liu and D. M. Salazar, "OpenOpticalFlow_PIV: An Open Source Program Integrating Optical Flow Method with Cross- Correlation Method for Particle Image Velocimetry," Journal of Open Research Software, vol. 9, no. 1. Ubiquity Press, Ltd., p. 3, 05-Feb-2021.
- J. H. Seong, M. S. Song, D. Nunez, A. Manera, and E. S. Kim, "Velocity refinement of PIV using global optical flow," Experiments in Fluids, vol. 60, no. 11. Springer Science and Business Media LLC, 29-Oct-2019.
- D. I. Zaripov, R. Li, N. I. Mikheev, and N. S. Dushin, "Speed-up algorithm based on parallel projection correlation technique for planar PIV: Accuracy and limitation," Flow Measurement and Instrumentation, vol. 60. Elsevier BV, pp. 88-94, Apr-2018. https://doi.org/10.1016/j.flowmeasinst.2018.02.019
- J. Park, S. Im, H. J. Sung, and J. S. Park, "PIV measurements of flow around an arbitrarily moving free surface," Experiments in Fluids, vol. 56, no. 3. Springer Science and Business Media LLC, Mar-2015. https://doi.org/10.12989/SEM.2015.56.4.549
- S. Cai, J. Liang, Q. Gao, C. Xu, and R. Wei, "Particle Image Velocimetry Based on a Deep Learning Motion Estimator," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6. Institute of Electrical and Electronics Engineers (IEEE), pp. 3538-3554, Jun-2020. https://doi.org/10.1109/TIM.2019.2932649
- Y. Lee, H. Yang, and Z. Yin, "PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry," Experiments in Fluids, vol. 58, no. 12. Springer Science and Business Media LLC, 15-Nov-2017.
- L. Mendes, A. Bernardino, and R. M. L. Ferreira, "piv-image-generator: An image generating software package for planar PIV and Optical Flow benchmarking," SoftwareX, vol. 12. Elsevier BV, p. 100537, Jul-2020.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational Physics, vol. 378. Elsevier BV, pp. 686-707, Feb-2019. https://doi.org/10.1016/j.jcp.2018.10.045
- L. Sun, H. Gao, S. Pan, and J.-X. Wang, "Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data," Computer Methods in Applied Mechanics and Engineering, vol. 361. Elsevier BV, p. 112732, Apr-2020.
- C. Rao, H. Sun, and Y. Liu, "Physics-informed deep learning for incompressible laminar flows," Theoretical and Applied Mechanics Letters, vol. 10, no. 3. Elsevier BV, pp. 207-212, Mar-2020. https://doi.org/10.1016/j.taml.2020.01.039
- Raffell M, Willert C, Scarano F, Kahler C, Wereley S, Kompenhans J. "Particle image velocimetry - a practical guide", Springer, 2018, pp. 216-218, pp. 156
- J. Taylor et al., "Optimizing the optimizer for data driven deep neural networks and physics informed neural networks," arXiv preprint arXiv:2205.07430, 2022.
- U. Ghia, K. Ghia, and C. Shin, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," Journal of Computational Physics, vol. 48, no. 3. Elsevier BV, pp. 387-411, Dec-1982. https://doi.org/10.1016/0021-9991(82)90058-4