DOI QR코드

DOI QR Code

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Received : 2023.01.25
  • Accepted : 2023.02.11
  • Published : 2023.03.31

Abstract

Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Project Number 20010851).

References

  1. M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, W. K. Dierkes, and A. Blume, "Measuring rubber friction using a Laboratory Abrasion Tester (LAT100) to predict car tire dry ABS braking", Tribol. Int., 131, 191 (2019).
  2. S.-L. Koo, H.-S. Tan, and M. Tomizuka, "Nonlinear tire lateral force versus slip angle curve identification", Proceedings of the 2004 American Control Conference, Boston, 2128 (2004).
  3. A. Todorut and N. Cordos, "Evaluation of the vehicle sideslip angle according to different road conditions", ed. by N. Burnete and B. O. Varga, p.814, Springer, 2019.
  4. M. Heinz, "An universal method to predict wet traction behaviour of tire tread compounds on the laboratory", J. Rubber Res., 13, 91 (2010).
  5. A. Doria, M. Tognazzo, G. Cusimano, V. Bulsink, A. Cooke, and B. Koopman, "Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics", Veh. Syst. Dyn., 51, 405 (2013).
  6. N. Rao, "An approach to rollover stability in vehicles using suspension relative position sensors and lateral acceleration sensors", Texas A&M University master thesis, 2005.
  7. W. F. Milliken and D. L. Milliken, "Race Car Vehicle Dynamics", SAE International, 1995.
  8. K. Nam, "Application of novel lateral tire force sensors to vehicle parameter estimation of electric vehicles", Sensors, 15, 28385 (2015).
  9. E. M. Kasprzak, K. E. Lewis, and D. L. Milliken, "Tire Asymmetries and Pressure Variations in the Radt/Milliken Nondimensional Tire Model", Proceeding of the SAE Automotive Dynamics, Stability and Controls Conference and Exhibition, USA., 1 (2006).
  10. J. Kim, "Estimation of tire forces using vehicle linear accelerations and yaw rate", Trans. Korean Soc. Automot. Eng., 27, 747 (2019).
  11. M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, T. Tolpekina, and A. Blume, "A new horizon for evaluating tire grip within a laboratory environment", Tribol. Lett., 68, 37 (2020).
  12. A. K. Bhowmick, "Ridge formation during the abrasion of elastomers", Rubber Chem. Technol., 55, 1055 (1982).
  13. A. Schallamach, "Friction and abrasion of rubber", Wear, 1, 384 (1958).
  14. A. Zmitrowicz, "Wear patterns and laws of wear - a review", J. Theor. Appl. Mech., 44, 219 (2006).
  15. B. Setiyana, R. Ismail, J. Jamari, and D. J. Schipper, "An analytical study of the wear pattern of an abraded rubber surface: the interaction model", Tribol.-Mater. Surf. Interfaces, 12, 186 (2018).
  16. Y. Fukahori and H. Yamazaki, "Mechanism of rubber abrasion, Part I: abrasion pattern formation in natural rubber vulcanizate", Wear, 171, 195 (1994).
  17. Y. Fukahori and H. Yamazaki, "Mechanism of rubber abrasion Part 2. general rule in abrasion pattern formation in rubber-like materials", Wear, 178, 109 (1994).
  18. K. A. Grosch, "Rubber abrasion and tire wear", Rubber Chem. Technol., 81, 470 (2008).
  19. Y. Uchiyama and Y. Ishino, "Pattern abrasion mechanism of rubber", Wear, 158, 141(1992).
  20. G. Tong and X. Jin, "Study on the simulation of radial tire wear characteristics", WSEAS Trans. Syst., 11, 419 (2012).
  21. S.-S. Choi, S. R. Yang, E. Chae, and C. E. Son, "Influence of carbon black contents and rubber compositions on formation of wear debris of rubber vulcanizates", Elast. Compos., 55, 108 (2020).
  22. C. E. Son, S. R. Yang, and S.-S. Choi, "Abrasion behaviors of NR/BR compounds using laboratory abrasion tester", Elast. Compos., 56, 12 (2021).
  23. E. Chae, S. R. Yang, and S.-S. Choi, "Test method for abrasion behavior of tire tread compounds using the wear particles", Polym. Test, 115, 107758 (2022).
  24. I. Jarlskog, A.-M. Stromvall, K. Magnusson, M. Gustafsson, M. Polukarova, H. Galfi, M. Aronsson, and Y. Andersson-Skold, "Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater", Sci. Total Environ., 729, 138950 (2020).
  25. M. L. Kreider, J. M. Panko, B. L. McAtee, L. I. Sweet, and B. L. Finley, "Physical and chemical characterization of tire related particles: Comparison of particles generated using different methodologies", Sci. Total Environ., 408, 652 (2010).
  26. P. J. Kole, A. J. Lohr, F. G. A. J. V. Belleghem, and A. M. J. Ragas, "Wear and tear of tyres: A stealthy source of micro-plastics in the environment", Int. J. Environ. Res. Public Health, 14, 1265 (2017).
  27. A. Wik and G. Dave, "Occurrence and effects of tire wear particles in the environment - A critical review and an initial risk assessment", Environ. Pollut., 157, 1 (2009).
  28. F. Amato, F. R. Cassee, H. D. V. D. Gon, R. Gehrig, M. Gustafsson, W. Hafner, R. M. Harrison, M. Jozwicka, F. J. Kelly, T. Moreno, A. S. H. Prevot, M. Schaap, J. Sunyer, and X. Querol, "Urban air quality: The challenge of traffic non-exhaust emissions", J. Hazard. Mater., 275, 31 (2014).
  29. C. Sirisinha, P. Sae-oui, K. Suchiva, and P. Thaptong, "Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber", J. Appl. Polym. Sci., 137, 48696 (2020).
  30. M. H. R. Ghoreishy, M. Alimardani, R. Z. Mehrabian, and S. T. Gangali, "Modeling the hyperviscoelastic behavior of a tire tread compound reinforced by silica and carbon black", J. Appl. Polym. Sci., 128, 1725 (2013).
  31. T. Miyazaki, "Rubber Composition", European patent EP3459996 (2017).
  32. S. Schaal, M. Martin, and L. Migliarini, "Tyre having a high wear resistance, tread band and elastomeric composition used therein", U.S. patent 2005O234165 (2005).
  33. S.-S. Choi and J.-C. Kim, "Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes", J. Ind. Eng. Chem., 18, 1166 (2012).
  34. S.-S. Choi and D.-H. Han, "Strain effect on recovery behaviors from circular deformation of natural rubber vulcanizate", J. Appl. Polym. Sci., 114, 935 (2009).
  35. P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950).
  36. S.-S. Choi and E. Kim, "A novel system for measurement of types and densities of sulfur crosslinks of a filled rubber vulcanizate", Polym. Test., 42, 62 (2015).
  37. W. Salgueiro, A. Marzocca, A. Somoza, G. Consolati, S. Cerveny, F. Quasso, and S. Goyanes, "Dependence of the network structure of cured styrene butadiene rubber on the sulphur content", Polymer, 45, 6037 (2004).
  38. S.-S. Choi, I.-S. Kim, and C.-S. Woo, "Influence of TESPT content on crosslink types and rheological behaviors of natural rubber compounds reinforced with silica", J. Appl. Polym. Sci., 106, 2753 (2007).
  39. A. Y. Coran, "Vulcanization: conventional and dynamic", Rubber Chem. Technol., 68, 351 (1995).
  40. A. Mousa and J. Karger-Kocsis, "Rheological and thermodynamical behavior of styrene/butadiene rubber-organoclay nanocomposites", Macromol. Mater. Eng., 286, 260 (2001).
  41. M. Jacob, S. Thomas, and K. T. Varughese, "Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites", Compos. Sci. Technol., 64, 955 (2004).
  42. A. H. Muhr and A. D. Roberts, "Rubber abrasion and wear", Wear, 158, 213 (1992).
  43. J. K. Oleiwi, M. S. Hamza, and M. Sh. Abed, "Improving the properties of the tire tread by adding SiO2 and Al2O3 to SBR rubber", Int. J. Appl. Eng. Res., 5, 1637 (2010).
  44. C. Sirisinha, P. Sae-oui, K. Suchiva, and P. Thaptong, "Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber", J. Appl. Polym. Sci., 137, 48696 (2020).
  45. N. Torbati-Fard, S. M. Hosseini, and M. Razzaghi-Kashani, "Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates", Polym. J., 52, 1223 (2020).
  46. E. Chae and S.-S. Choi, "Influence of particle size on inhomogeneity in rubber compositions of NR/BR blend wear particles by single particle analysis", Polym. Adv. Technol., 33, 897 (2022).