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PROUHET ARRAY MORPHISM AND PARIKH q-MATRIX

K. JANAKI, R. ARULPRAKASAM∗ AND V.R. DARE

Abstract. Prouhet string morphism has been a well investigated mor-

phism in different studies on combinatorics on words. In this paper we
consider Prouhet array morphism for the images of binary picture ar-

rays in terms of Parikh q−matrices. We state the formulae to calculate

q−counting scattered subwords of the images of any arrays under this ar-
ray morphism and also investigate the properties such as q−weak ratio

property and commutative property under this array morphism in terms
of Parikh q− matrices of arrays.
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1. Introduction

The Parikh matrix mapping [12] was originally introduced as an extension
of the Parikh vector [14]. Parikh matrices provide more structural information
about words than Parikh vectors and is a useful tool in studying subword oc-
currences. Since the introduction of Parikh matrices a number of studies on
various properties related to Parikh matrices have been extensively investigated
in [1, 15, 18]. A notable improvement seems to be the use of morphisms that
distinguish amiable binary words based on their Parikh matrices. Specifically,
properties of subwords and Parikh matrices of image words under some mappings
known as morphisms on words have been widely analyzed in [2, 3, 16]. Since
the characterization of words with the same Parikh matrix is an open problem,
Atanasiu [2] exploited the Parikh matrices of their images under Istrail morphism
to separate M−equivalent words. However in [3], Atanasiu showed that these
morphisms distinguish the sequences in many classes of M−equivalent words
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but not totally. Teh shown in [19] that no morphism can completely separate
M−equivalent words over a given alphabet.

As an extension of the Parikh matrix, O.Egecioglu et al. introduced the
Parikh q−matrix in [10], which transfers words to matrices with polynomial
elements in q. The Parikh q−matrix provides more details about words than
Parikh matrix. Two words having the same Parikh matrix can have different
Parikh q−matrices. Since the Parikh q−matrix mapping is not injective, sev-
eral investigations on injectivity in relation to the Parikh q−matrix have been
analyzed [5, 6, 7]. A conspicuous development seems to be the use of certain
morphisms which separate M−equivalent words by their Parikh matrices but
not completely. This leads to consider Prouhet morphism on words to identify
q−equivalent binary words based on their Parikh q−matrix.

Mathematics and computer science have developed an interest in picture
languages. In addition, it is integral to the theory of image analysis, a well-
established and active field with numerous applications. A two-dimensional lan-
guage or picture language has been defined since 1967 by extending the results
and techniques of string (one-dimensional) languages to the two-dimensional
case. Pictures are generally used to understand things better than other modes.
So, there is a lot of technology to compute pictures using computers. As a result
of this computation of pictures, picture-generating devices were introduced. A
picture array is an arrangement of symbols from a finite alphabet in rows and
columns. For example, a digitized binary picture array describing the chessboard
pattern with each pixel having white square or black square is shown in Figure
1.

Figure 1. Chessboard Pattern

A picture language is a set of such picture arrays. To recognize or generate
these picture arrays, various formal models are employed. These strategies were
derived from the problems associated with image processing and pattern recog-
nition. Extensive investigations on picture languages studying the problem of
generation of such languages and other properties have been done by different
researchers. In addition, several combinatorial properties of picture arrays have
been extensively investigated by several researchers [8, 9]. In [17], two types of
Parikh matrices are defined, namely a row Parikh matrix and a column Parikh
matrix for a picture array. These matrices extend the notion of a Parikh matrix
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to arrays. The notion of M -ambiguity of a picture array is introduced in [17] by
considering two picture arrays to be M -equivalent if their row Parikh matrices
and their column Parikh matrices are the same. More specifically, conditions
that ensure M−ambiguity are established for binary and ternary arrays. The
problem of reconstruction of two dimensional binary images has been studied
[11] based on Parikh matrices. In [13], Nithya Vani et al. introduced Prouhet
array morphism and studied the properties of images of binary and ternary
arrays under this array morphism interms of Parikh matrices. Based on the no-
tion of Parikh q−matrix and Parikh matrices of picture array, in [4] two types of
Parikh q−matrices are defined, namely row Parikh q−matrix and column Parikh
q−matrix, leading to the notions of q−row and q−column equivalences of two
arrays and also several properties relating to q−ambiguity including conditions
for q−ambiguity of row or column products for binary arrays are derived. Dif-
ferent kinds of morphisms have been considered in the study of combinatorics
on words. A conspicuous development seems to be the use of certain morphisms
which separateM−equivalent words by their Parikh matrices but not completely.
This leads us to consider about Prouhet morphism on words and picture arrays
to identify q−equivalent binary words and binary picture arrays based on their
Parikh q−matrix.

The remainder of this paper is structured as follows. Section 2 provides
basic definitions which are used in subsequent sections. In section 3, we state
the formulae to calculate q−counting of scattered subwords of the image of
any picture array under Prouhet array morphism. We also establish several
properties of image of picture arrays under this array morphism in the sense of
Parikh q−matrices and scattered subwords.

2. Preliminaries

In this section we recollect fundamental definitions and notations of words,
scattered subwords, Parikh matrix and Parikh q−matrix for two dimensional
words.

2.1. Subwords. Consider an alphabet Σ = {a1, a2, · · · , ak} and the set of all
words over Σ is Σ∗. For any word x ∈ Σ∗, the length of x is denoted by |x|.
An ordered alphabet is an alphabet Σ = {a1, a2, · · · , ak} with the total order
relation a1 < a2 < · · · < ak and it is denoted by Σk. The empty word is
denoted by λ. A word y ∈ Σ∗ is called a scattered subword of x if there exist
words y1, y2, · · · , yn and x0, x1, x2, · · · , xn over Σ such that y = y1y2 · · · yn and
x = x0y1x1y2 · · · ynxn. The number of occurrences of the word y as a scattered
subword of the word x is denoted by |x|y. For instance |abbbaaab|aab = 6. Let
aij be the word aiai+1 · · · aj for 1 ≤ i < j ≤ k and if i = j then aij = ai.

2.2. Parikh matrix. Let Mk denote the set of all k × k upper triangular
matrices with entries N and unit diagonal where N is the set of all non-negative
integers.
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Definition 2.1. [12] Let Σk = {a1, a2, · · · , ak} be an ordered alphabet where
k ≥ 1. The Parikh matrix mapping denoted by ψk is the morphism ψk : Σ∗

k →
Mk+1 defined as ψk(al) = (mij)1 ≤ i, j ≤ k+1 where

• mii = 1 for 1 ≤ i ≤ k + 1
• ml,(l+1) = 1

and all other entries are zero.

Two words x, y ∈ Σ∗
k are said to be M−equivalent denoted by x ∼M y if and

only if ψk(x) = ψk(y). A word z ∈ Σ∗
k is said to be M−ambiguous if there exists

a word w ̸= z such that z ∼M w. Otherwise z is called M−unambiguous.

2.3. Parikh q−matrix. The notion of Parikh matrices is extended to a map-
ping called Parikh q−matrix mapping which takes its values in matrices with
polynomial entries. The entries of the Parikh q−matrices are obtained by
q−counting the number of occurrences of certain words as scattered subwords of
a given word. The q−counting of a scattered subword aij of a word x represented
by Sx,aij is defined as follows:

Definition 2.2. [10] Let Σk = {a1, a2, · · · , ak} be an ordered alphabet where
k ≥ 1, x ∈ Σ∗

k and aij be a scattered subword of x for 1 ≤ i ≤ j < k. Then

Sx,aij
(q) =

∑
x=uiaiui+1···ujajuj+1

q
|ui|ai

+|ui+1|ai+1
+···+|uj |aj

+|uj+1|aj+1 .

For any word x ∈ Σ∗
k, Sx,aij

(1) = |x|aij
for 1 ≤ i ≤ j ≤ k. Let Mk(q) denote

the set of all k×k upper triangular matrices with entries N(q) and unit diagonal
where N(q) is the set of all polynomials in the variable q with coefficients from
N.

Definition 2.3. [10] Let Σk = {a1, a2, · · · , ak} be an ordered alphabet and
x ∈ Σ∗

k then the Parikh q−matrix mapping denoted by ψq is the morphism
ψq : Σ

∗
k → Mk(q) defined as ψq(al) = (mij)1 ≤ i, j ≤ k+1 where

• mll = q

• mii = 1 for 1 ≤ i ≤ k, i ̸= l
• ml(l+1) = 1 if l < k

and all other entries are zero.

Note that the Parikh vector of x is given by the formal derivative of (q|x|a1 ,

q|x|a2 , · · · , q|x|ak ) with respect to q at q = 1. The entries of the q−matrices are
obtained by q−counting the number of occurrences of certain words as scattered
subwords of a given word. By comparing Parikh matrix with Parikh q−matrix,
add a new symbol d to Σ3 to get Σ4 = {a, b, c, d} and compute the Parikh
q−matrix of the word x treating it as a word over Σ4. Two words x, y ∈ Σ∗

k

are said to be q−equivalent denoted by x ∼q y if and only if ψq(x) = ψq(y). A
word z ∈ Σ∗

k is said to be q−ambiguous if there exists a word w ̸= z such that
z ∼q w. Otherwise z is called q−unambiguous. Note that if two words x, y are
q−equivalent then they have same Parikh vector.
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Throughout the paper if there is a word x from Σk, we assume x to be a word
from Σk+1 and compute the Parikh q−matrix of x in Mk+1(q).

2.4. Two dimensional words. Let Σk = {a1 < a2 < · · · < ak} be an ordered
alphabet and h, v be two positive integers. A two dimensional word (or picture
array) X is a rectangular array of symbols over Σk in h rows and v columns
which is in the form of

a11 · · · a1v
...

. . .
...

ah1 · · · ahv

where aij ∈ Σ and 1 ≤ i ≤ h, 1 ≤ j ≤ v. The set of all picture arrays over Σk

is denoted by ℘. Let ◦ and ⋄ be the symbol of column concatenation and row
concatenation of picture arrays respectively in ℘. For X,Y ∈ ℘, X ◦Y is defined
if and only if X and Y have same number of rows and X ⋄ Y is defined if and
only if X and Y have same number of columns.

2.4.1. Parikh q−matrices of a Picture array.

Definition 2.4. [4] For h, v ≥ 1, let X ∈ ℘ be a h× v array over Σk. Let xi be
the horizontal words in the h rows and yj be the vertical words in the v columns.
Let ψq(xi) and ψq(y

t
j) be the Parikh q−matrix of xi and y

t
j respectively. Then

the row and column Parikh q−matrix Rq(X) and Cq(X) respectively are defined
as

Rq(X) =

h⊕
i=1

ψq(xi) and Cq(X) =

v⊕
j=1

ψq(y
t
j).

Definition 2.5. For h, v ≥ 1, let X ∈ ℘ be a h× v array over Σk. Let xi be the
horizontal words in the h rows and yj be the vertical words in the v columns. Let
ui,j be a scattered subword of X where 1 ≤ i ≤ j ≤ k. Then the row and column
q−counting scattered subword ui,j of an array X denoted by R(SX,ui,j

(q)) and
C(SX,ui,j

(q)) respectively and defined as

R(SX,ui,j
(q)) =

h∑
i=1

Sxi,ui,j
(q) and C(SX,ui,j

(q)) =

v∑
j=1

Syt
j ,ui,j

(q).

In this work, we will be dealing mostly with Σ3 and without loss of generality,
let Σ3 = {a, b, c} and a < b < c be the corresponding total order.

3. Parikh q-matrix under Prouhet Array Morphism

In this section, we consider Prouhet array morphism and investigate the prop-
erties under this array morphism in terms of Parikh q−matrices of binary arrays.

Definition 3.1. [16] A Prouhet morphism is a mapping P : Σ∗
3 → Σ∗

3 defined
by

P(a) = abc, P(b) = bca, P(c) = cab.
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The following theorem states the formulae to calculate q-counting scattered
subwords of the image of any words under Prouhet morphism.

Lemma 3.2. Suppose Σ2 = {a < b} and x ∈ Σ∗
2. Then the q-counting of a

image word in x under Prouhet morphism are as follows:

(i) SP(x),a(q) = |x|aq|x| + |x|bq|x|−1

(ii) SP(x),b(q) = |x|q|x|

(iii) SP(x),c(q) =

|x|∑
i=1

qi−1

(iv) SP(x),ab(q) =

[
1

2
|x|a (|x|a + 1) + |x|ab

]
q|x| +

[
1

2
|x|b (|x|b − 1) + |x|ba

]
q|x|−1

(v) SP(x),bc(q) = 1 + 2q+ 3q2 + ....+ (|x|)q|x|−1

(vi) SP(x),abc(q) = 1 + 3q+ 6q2 + ....+

(
1

2
|x|(|x| − 1)

)
q|x|−2

+

(
1

2
|x|a(|x|a + 1) + |x|ab

)
q|x|−1.

The following defines Prouhet array morphism, an extension of Prouhet mor-
phism on words.

Definition 3.3. [13] A Prouhet array morphism is a mapping P : Σ++
3 → Σ++

3

defined by

P(a) =
a b c
b c a
c a b

, P(b) =
b c a
c a b
a b c

, P(c) =
c a b
a b c
b c a

.

Example 3.4. Consider an array

X =
a b a
a a b

over Σ2. Then the image of X under Prouhet array morphism is

P(X) =

a b c b c a a b c
b c a c a b b c a
c a b a b c c a b
a b c a b c b c a
b c a b c a c a b
c a b c a b a b c .

Now obtain certain properties of arrays in the context of Prouhet array mor-
phism so we consider the following two string morphisms P1, P2 as follows:

Definition 3.5. [13] A string morphism is a mapping P1 : Σ∗
3 → Σ∗

3 defined by

P1(a) = bca, P1(b) = cab, P1(c) = abc.
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Definition 3.6. [13] A string morphism is a mapping P2 : Σ∗
3 → Σ∗

3 defined by

P2(a) = cab, P2(b) = abc, P2(c) = bca.

Using the definition of P1, we get the following results:

Lemma 3.7. Suppose Σ2 = {a < b} and x ∈ Σ∗
2. Then the q-counting of image

word in x under Prouhet string morphism P1 are as follows:

(i) SP1(x),a(q) = |x|aq|x|−1 + |x|bq|x|

(ii) SP1(x),b(q) = |x|aq|x| + |x|bq|x|−1

(iii) SP1(x),c(q) =

|x|∑
i=1

qi−1

(iv) SP1(x),ab(q) = |x|baq|x| +
[
|x|b +

1

2
|x|a (|x|a − 1) +

1

2
|x|b(|x|b − 1)

]
q|x|−1

+ |x|abq|x|−2

(v) SP1(x),bc(q) = 1 + 2q+ 3q2 + ....+ (|x| − 1)q|x|−2 + |x|aq|x|−1

(vi) SP1(x),abc(q) = 1 + 3q+ 6q2 + ....+

(
1

2
(|x| − 1)(|x| − 2)

)
q|x|−3

+

(
1

2
(|x|)(|x| − 1)− |x|ab

)
q|x|−2 + |x|baq|x|−1.

Proof. Let x = x1x2 · · ·xn be the word over Σ2. Then the image of x under
Prouhet string morphism of is P1(x) = P1(x1)P1(x2) · · · P1(xi−1)P1(xi)P1(xi+1)
· · · P1(xn).

(1) Consider an occurrence of a in P1(x). Then a must be in some P1(xi) for
some 1 ≤ i ≤ n.

If xi = a, since P1(a) = bca, the number of a′s (in P1(x)) on the left of the a
in P1(xi) is i− 1 (since each P1(xk) has one a) and the number of b on the right
of this a is n − i. Therefore, the monomial due this occurrence of a in P1(x) is
q|x|−1. As there are |x|a number of a′s in x, the q−counting polynomial due to
the occurrences of a in P1(x) is |x|aq|x|−1.

If xi = b, the number of a′s (in P1(x)) on the left of the a in P1(xi) is i − 1
(since each P1(xk) has one a) and the number of b on the right of this a is
1+n− i (since each P1(xk) has one a and P1(a) = abc contributes 1 to the sum).
Therefore, the monomial due this occurrence of b in P1(x) is q

|x|. As there are
|x|b number of a′s in x, the q−counting polynomial due to the occurrences of b
in P1(x) is |x|bq|x|. Therefore the q-counting a of P1(x) as

SP1(x),a(q) = the q-counting polynomial due to the occurrences of a in P1(x)

+the q-counting polynomial due to the occurrences of b in P1(x)

= |x|aq|x|−1 + |x|bq|x|.
(2) The proof can be omitted as the argument is similar to (1).
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(3) The argument is similar as in (i) and in fact regardless of whether xi =
a (or b), the number of c′s (in P(x)) on the left of the a (or b) in P (xi) is i− 1
(since each P (xk) has one c). Therefore, the monomial due to this occurrence
of c in P (x) is qi−1. As there are |x| number of c′s in P(x), the q−counting

polynomial due to the occurrences of c in P (x) is
∑|x|

i=1 q
i−1.

(4) We argue by induction on length of x to show that SP1(x),ab(q) = |x|baq|x|+[
|x|b + 1

2 |x|a (|x|a − 1) + 1
2 |x|b(|x|b − 1)

]
q|x|−1+ |x|abq|x|−2. Clearly the word of

length 1 satisfies SP1(x),ab(q) and thus the base step holds. Consider the induc-
tion step. At this step there are two cases depending on the last letter.

Case : 3 Consider x′ = ya. By applying Prouhet string morphism P1 we get
P1(x

′) = P1(y)bca. Note that for each occurrences of ab in P1(y), the contribu-
tion of it to SP1(x′),ab(q) either increases by 1 due to occurrence of a after y or
decreases by 1 due to occurrence of b′s after a′s in x′. There are new occurrence
of ab in P1(x

′) due to new b (after P1(y)). However notice that for each a in
P1(y), together with the new b, the contribution of it to SP1(x′),ab(q) is the same
as its contribution in SP1(y),a(q) except the power increase by one due to c after
the new b. Here using result by (1) and by the induction hypothesis

SP1(x′),ab(q)

= |y|baq|y|+1 + [|y|b + |y|aa + |y|bb] q|y| + |y|abq|y|−1 + |y|aq|y|

+|y|bq|y|+1

= [|x′|ba − |x′|b] q|x
′| + [|x′|b + |x′|aa − (|x′|a − 1) + |x′|bb] q|x

′|−1

+|x′|abq|x
′|−2 + (|x′|a − 1)q|x

′|−1 + |x′|bq|x
′|

= |x′|baq|x
′| + [|x′|b|+ x′|aa + |x′|bb] q|x

′|−1 + |x′|abq|x
′|−2

= |x′|baq|x
′| +

[
|x′|b|+

1

2
|x′|a (|x′|a − 1) +

1

2
|x′|b(|x′|b − 1)

]
q|x

′|−1

+|x′|abq|x
′|−2.

Case : 4 Consider x′ = yb. This is similar to Case 3.

(5) Here also we argue by induction on length of x to show that SP1(x),bc(q) =

1 + 2q + 3q2 + .... + (|x| − 1)q|x|−2 + |x|aq|x|−1. The base step holds since the
word of length 1 satisfies SP1(x),bc(q). At this induction step there are two cases
depending on the last letter.

Case : 5 Consider x′ = ya. By applying Prouhet string morphism P1 we
get P1(x

′) = P1(y)bca. For each occurrences of bc in P1(y), the contribution of

it to SP1(x′),bc(q) is similar to SP1(y),c(q) that is
∑|y|

i=1(|y| + 1 − i)q|y|−i. There
are new occurrence of bc in P1(x

′) due to new c (after P1(y)). However notice
that for each b in P1(y) (which is corresponds to a in y), together with the new



Prouhet Array Morphism and Parikh q−matrix 353

c, the contribution of it to SP1(x′),bc(q) is (|y|a + 1)q|y|. Now by the induction
hypothesis

SP1(x′),bc(q) =

|y|∑
i=1

(|y|+ 1− i)q|y|−i + (|y|a + 1)q|y|

=

|x′|−1∑
i=1

(|x′| − 1 + 1− i)q|x
′|−1−i + (|x′|a − 1 + 1)q|x

′|−1

=

|x′|−1∑
i=1

(|x′| − i)q|x
′|−1−i + (|x′|a)q|x

′|−1

= 1 + 2q+ · · ·+ (|x′| − 1)q|x
′|−2 + |x′|aq|x

′|−1.

Case : 6 Consider x′ = yb. This is similar to Case 5.

(6) By using the result for part (4) and (5) and by induction hypothesis, we
can prove (vi) and hence the proof part is omitted. □

Using the definition of P2, we get the following results:

Lemma 3.8. Suppose Σ2 = {a < b} and x ∈ Σ∗
2. Then the q-counting of image

word in x under Prouhet morphism are as follows:

(i) SP2(x),a(q) = |x|q|x|

(ii) SP2(x),b(q) = |x|aq|x|−1 + |x|bq|x|

(iii) SP2(x),c(q) =

|x|∑
i=1

qi−1

(iv) SP2(x),ab(q) =

[
1

2
|x|a (|x|a + 1) + |x|ba

]
q|x|−1 +

[
1

2
|x|b (|x|b + 1) + |x|ab

]
q|x|

(v) SP2(x),bc(q) = 1 + 2q+ 3q2 + ....+ (|x| − 1)q|x|−2 + |x|bq|x|−1

(vi) SP2(x),abc(q) = 1 + 3q+ 6q2 + ....+

(
1

2
|x|(|x| − 1)

)
q|x|−2

+

(
1

2
|x|b(|x|b + 1) + |x|ab

)
q|x|−1.

Proof. Let x = x1x2 · · ·xn be the word over Σ2. Then the image of x under
Prouhet string morphism of is P2(x) = P2(x1)P2(x2) · · · P2(xi−1)P2(xi)P2(xi+1)
· · · P2(xn).

(1)Consider an occurrence of a in P2(x). Then this a must be in some P2(xi)
for some 1 ≤ i ≤ n.

If xi = a, since P2(a) = cab, the number of a′s (inP2(x)) on the left of the b
in P2(xi) is i− 1 (since each P2(xk) has one b) and the number of b on the right
of this b is 1 + n − i (since each P2(xk) has one b and P2(a) = cab contributes
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1 to the sum). Therefore, the monomial due this occurrence of a in P2(x) is
qi−1+1+n−i = qn = q|x|. As there are |x|a number of a′s in x, the q−counting
polynomial due to the occurrences of a in P (x) is |x|aq|x|.

If xi = b, since P2(b) = abc, the number of a′s on the left of the b in P2(xi)
is i − 1 (since each P2(xk) has one b) and the number of b on the right of this
a is 1 + n − i. Therefore, the monomial due this occurrence of b in P2(x) is
qi−1+1+n−i = qn = q|x|. As there are |x|b number of b′s in x, the q−counting
polynomial due to the occurrences of b in P2(x) is |x|bq|x|. Therefore the q-
counting a of P2(x) as SP2(x),a(q)

SP2(x),a(q) = the q-counting polynomial due to the occurrences of a in P2(x)

+the q-counting polynomial due to the occurrences of b in P2(x)

= |x|aq|x| + |x|bq|x|

= |x|q|x|.

(2) The proof can be omitted as the argument is similar to (1).

(3) The argument is similar as in (i) and in fact regardless of whether xi =
a or b, the ith occurrence of c in P2(x) contributes clearly to qi−1. As there are

|x| number of c′s in P2(x), the q-counting c of P2(x) is
∑|x|

i=1 q
i−1.

(4) We argue by induction on length of x to show that

SP2(x),ab(q) =

[
1

2
|x|a (|x|a + 1) + |x|ba

]
q|x|−1 +

[
1

2
|x|b (|x|b + 1) + |x|ab

]
q|x|.

Clearly the word of length 1 satisfies SP2(x),ab(q) and thus the base step holds.
Consider the induction step. At this step there are two cases depending on the
last letter.

Case : 7 Consider x′ = ya. By applying Prouhet string morphism P2 we
get P2(x

′) = P2(y)cab. Consider SP2(x),ab(q). It should be noted that for each
occurrences of ab in P2(y), the contribution of it to SP2(x′),ab(q) is increase by
1 interms of the power of q due to occurrence of a after y. There are new
occurrence of ab in P2(x

′) due to new b (after P2(y)). Also notice that for each
a in P2(y), together with the new b, the contribution of it to SP2(x′),ab(q) is the
same as its contribution in SP2(y),a(q). Also there occurs an ab in P2(x

′) after
P2(y). Here using result by (1) and by the induction hypothesis

SP2(x′),ab(q)

= [|y|a + |y|aa + |y|ba] q|y| + [|y|b + |y|bb + |y|ab] q|y|+1 +

[|y|a + |y|b + 1] q|y|

= [(|x′|a − 1) + (|x′|aa − |x′|a + 1) + (|x′|ba − |x′|b)] q|x
′|−1

+ [|x′|b + |x′|bb + |x′|ab] q|x
′| + [(|x′|a − 1) + |x′|b + 1] q|x

′|−1
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= [|x′|a + |x′|aa + |x′|ba] q|x
′|−1 + [|x′|b + |x′|bb + |x′|ab] q|x

′|

=

[
1

2
|x′|a (|x′|a + 1) + |x′|ba

]
q|x

′|−1 +

[
1

2
|x′|b (|x′|b + 1) + |x′|ab

]
q|x

′|.

Case : 8 Consider x′ = yb. This is similar to Case 7.

(5) Here also we argue by induction on length of x to show that SP2(x),bc(q) =

1 + 2q + 3q2 + .... + (|x| − 1)q|x|−2 + |x|bq|x|−1. The base step holds since the
word of length 1 satisfies SP2(x),bc(q). At this induction step there are two cases
depending on the last letter.

Case : 9 Consider x′ = ya. By applying Prouhet string morphism P2 we get
P2(x

′) = P2(y)cab. For each occurrences of bc in P2(y), the contribution of it to

SP2(x′),bc(q) is similar to SP2(y),c(q) that is
∑|y|

i=1(|y|+1− i)q|y|−i. There are new
occurrence of bc in P2(x

′) due to new c (after P2(y)). However notice that for
each b in P2(y) (which is corresponds to b in y), together with the new c, the
contribution of it to SP2(x′),bc(q) is (|y|b)q|y|. Now by the induction hypothesis

SP2(x′),bc(q) =

|y|∑
i=1

(|y|+ 1− i)q|y|−i + (|y|b)q|y|

=

|x′|−1∑
i=1

(|x′| − 1 + 1− i)q|x
′|−1−i + (|x′|b)q|x

′|−1

=

|x′|−1∑
i=1

(|x′| − i)q|x
′|−1−i + (|x′|b)q|x

′|−1

= 1 + 2q+ · · ·+ (|x′| − 1)q|x
′|−2 + |x′|bq|x

′|−1.

Case : 10 Consider x′ = yb. This is similar to Case 9.

(6) By using the result for part (4) and (5) and by induction hypothesis, we
can prove (6) and hence the proof part is omitted. □

We state the formulae to calculate q-counting scattered subwords of the image
of any arrays under Prouhet array morphism.

Theorem 3.9. Let X = rows(x1, x2, · · · , xm) be an m×n array over Σ2. Then
the q-counting of a image array in X under Prouhet array morphism are as
follows:
(i) SP(X),a(q) = SP(X),b(q) = 2mnqn +mnqn−1

(ii) SP(X),c(q) = 3m
[∑n

i=1 q
i−1

]
.

Proof. Let x1, x2, · · · , xm be the words in the consecutive rows of the array X
such that |xi| = |xi|a + |xi|b which implies |xi| = n. Let P(xi) be the image of
each row xi of X under Prouhet array morphism P(X). Each row xi in X yields
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three consecutive rows of words in P(X) and these are obtained by Definition
3.1 we have P(a) = abc, P(b) = bca, P(c) = cab and by Defintions 3.5, 3.6 we have
P1(a) = bca, P1(b) = cab, P1(c) = abc and P2(a) = cab, P2(b) = abc, P2(c) = bca.
By Lemma 3.2 we have SP(x),a(q) = |x|aq|x| + |x|bq|x|−1 and by Lemmas 3.7, 3.8

we have SP1(x),a(q) = |x|aq|x|−1 + |x|bq|x| and SP2(x),a(q) = |x|q|x| so that

SP(X),a(q) =

m∑
i=1

SP(xi),a(q) +

m∑
i=1

SP1(xi),a(q) +

m∑
i=1

SP2(xi),a(q)

=

m∑
i=1

[
|xi|aq|xi| + |xi|bq|xi|−1

]
+

m∑
i=1

[
|xi|aq|xi|−1 + |xi|bq|xi|

]
+

m∑
i=1

[
|xi|q|xi|

]
=

m∑
i=1

[
|xi|q|xi| + |xi|q|xi| − 1 + |xi|q|xi|

]
=

m∑
i=1

[
2nqn + nqn−1

]
= 2mnqn +mnqn−1.

Similarly we can show that SP(X),b(q) = 2mnqn +mnqn−1.

SP(X),c(q) =

m∑
i=1

SP(xi),c(q) +

m∑
i=1

SP1(xi),c(q) +

m∑
i=1

SP2(xi),c(q)

=

m∑
i=1

 |xi|∑
i=1

qi−1

+

m∑
i=1

 |xi|∑
i=1

qi−1

+

m∑
i=1

 |xi|∑
i=1

qi−1


=

m∑
i=1

3 |xi|∑
i=1

qi−1


= 3m

 |xi|∑
i=1

qi−1

 .
□

Theorem 3.10. Let X = rows(x1, x2, · · · , xm) be an m×n array over Σ2. Then
the q-counting ab of an image array in X under Prouhet array morphism is as
follows:

SP(X),ab(q) =

[
mn

2
(n+ 1) +

m∑
i=1

|xi|ab

]
qn +

[
mn2 − 2

m∑
i=1

|xi|ab

]
qn−1
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+

[
m∑
i=1

|xi|ba

]
qn−2.

Proof. Let x1, x2, · · · , xm be the words in the consecutive rows of the array X
such that |xi| = |xi|a + |xi|b which implies |xi| = n. Let P(xi) be the image of
each row xi of X under Prouhet array morphism P(X). Each row xi in X yields
three consecutive rows of words in P(X) and these are obtained by Definition
3.1 we have P(a) = abc, P(b) = bca, P(c) = cab and by Defintions 3.5, 3.6 we have
P1(a) = bca, P1(b) = cab, P1(c) = abc and P2(a) = cab, P2(b) = abc, P2(c) = bca.
By Lemmas 3.2, 3.7, 3.8 we have

SP(X),ab(q)

=

m∑
i=1

SP(xi),ab(q) +

m∑
i=1

SP1(xi),ab(q) +

m∑
i=1

SP2(xi),ab(q)

=

m∑
i=1

[[
1

2
|xi|a (|xi|a + 1) + |xi|ab

]
q
|xi| +

[
1

2
|xi|b (|xi|b − 1) + |xi|ba

]
q
|xi|−1

]

+

m∑
i=1

[
|xi|baq|xi| +

[
|xi|b +

1

2
|xi|a (|xi|a − 1) +

1

2
|xi|b(|xi|b − 1)

]
q
|xi|−1 + |xi|abq|xi|−2

]

+

m∑
i=1

[[
1

2
|xi|a (|xi|a + 1) + |xi|ba

]
q
|xi|−1 +

[
1

2
|xi|b (|xi|b + 1) + |xi|ab

]
q
|xi|

]

=

m∑
i=1

[
1

2
|xi|a (|xi|a + 1) + |xi|ab + |xi|ba +

1

2
|xi|b (|xi|b + 1) + |xi|ab

]
q
|xi|

+

m∑
i=1

[
1

2
|xi|b (|xi|b − 1) + |xi|ba + |xi|b +

1

2
|xi|a (|xi|a − 1) +

1

2
|xi|b(|xi|b − 1)

+
1

2
|xi|a (|xi|a + 1) + |xi|ba

]
q
|xi|−1 +

m∑
i=1

[|xi|ab] q|xi|−2

Since |xi|ab + |xi|ba = |xi|a · |xi|b we have

=

m∑
i=1

[
1

2

[
(|xi|a + |xi|b)2 − 2|xi|a|xi|b + (|xi|a + |xi|b)

]
+ |xi|ab + |xi|a · |xi|b

]
q
|xi|

+

m∑
i=1

[
|xi|2a + |xi|2b + 2|xi|ba

]
q
|xi|−1 +

m∑
i=1

[|xi|ab] q|xi|−2

=

m∑
i=1

[
1

2
(|xi|a + |xi|b)2 +

1

2
(|xi|a + |xi|b) + |xi|ab

]
q
|xi|

+

m∑
i=1

[
(|xi|a + |xi|b)2 − 2|xi|a|xi|b + 2|xi|a|xi|b − 2|xi|ab

]
q
|xi|−1 +

m∑
i=1

[|xi|ab] q|xi|−2

=

[
mn

2
(n+ 1) +

m∑
i=1

|xi|ab

]
q
n +

[
mn2 − 2

m∑
i=1

|xi|ab

]
q
n−1 +

m∑
i=1

[|xi|ab] qn−2.
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□

Theorem 3.11. Let X = rows(x1, x2, · · · , xm) be an m × n array over Σ2.
Then the q-counting bc of an image array in X under Prouhet array morphism
is SP(X),bc(q) = 3m

[
1 + 2q+ 3q2 + · · ·+ (n− 1) qn−2

]
+ 2mnqn−1.

Proof. Let x1, x2, · · · , xm be the words in the consecutive rows of the array X
such that |xi| = |xi|a + |xi|b which implies |xi| = n. Let P(xi) be the image of
each row xi of X under Prouhet array morphism P(X). Each row xi in X yields
three consecutive rows of words in P(X) and these are obtained by Definition
3.1 we have P(a) = abc, P(b) = bca, P(c) = cab and by Defintions 3.5, 3.6 we have
P1(a) = bca, P1(b) = cab, P1(c) = abc and P2(a) = cab, P2(b) = abc, P2(c) = bca.
By Lemmas 3.2, 3.7 and 3.8 we have

SP(X),bc(q) =

m∑
i=1

SP(xi),bc(q) +

m∑
i=1

SP1(xi),bc(q) +

m∑
i=1

SP2(xi),bc(q)

=

m∑
i=1

[
1 + 2q+ 3q2 + ....+ (|xi|)q|xi|−1

]
+

m∑
i=1

[
1 + 2q+ 3q2 + ....+ (|xi| − 1)q|xi|−2 + |xi|aq|xi|−1

]
+

m∑
i=1

[
1 + 2q+ 3q2 + ....+ (|xi| − 1)q|xi|−2 + |xi|bq|xi|−1

]
= 3

m∑
i=1

[
1 + 2q+ 3q2 + ....+ (|xi| − 1)q|xi|−2

]
+

m∑
i=1

[|xi|] q|xi|−1 +

m∑
i=1

[|xi|a + |xi|b] q|xi|−1

= 3m
[
1 + 2q+ 3q2 + ....+ (n− 1)qn−2

]
+ 2mnqn−1

□

Theorem 3.12. Let X = rows(x1, x2, · · · , xm) be an m×n array over Σ2. Then
the q-counting abc of an image array in X under Prouhet array morphism is as
follows:

SP(X),abc(q) =

[
3m

2
(n− 1)(n− 2)

]
qn−3 +

[
3mn

2
(n− 1)−

m∑
i=1

|xi|ab

]
qn−2

+

[
mn

2
(n+ 1) +

m∑
i=1

|xi|ab

]
qn−1.

Proof. Let x1, x2, · · · , xm be the words in the consecutive rows of the array X
such that |xi| = |xi|a + |xi|b which implies |xi| = n. Let P(xi) be the image of
each row xi of X under Prouhet array morphism P(X). Each row xi in X yields
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three consecutive rows of words in P(X) and these are obtained by Definition
3.1 we have P(a) = abc, P(b) = bca, P(c) = cab and by Defintions 3.5, 3.6 we have
P1(a) = bca, P1(b) = cab, P1(c) = abc and P2(a) = cab, P2(b) = abc, P2(c) = bca.
By Lemma 3.2, 3.7, and 3.8, we have

SP(X),abc(q)

=

m∑
i=1

SP(xi),abc
(q) +

m∑
i=1

SP1(xi),abc
(q) +

m∑
i=1

SP2(xi),abc
(q)

=

m∑
i=1

[
1 + 3q+ 6q2 + ....+

(
1

2
|xi|(|xi| − 1)

)
q|xi|−2 +

(
1

2
|xi|a(|xi|a + 1) + |xi|ab

)
q|xi|−1

]

+

m∑
i=1

[
1 + 3q+ 6q2 + ....+

(
1

2
(|xi| − 1)(|xi| − 2)

)
q|xi|−3

+

(
1

2
(|xi|)(|xi| − 1)− |xi|ab

)
q|xi|−2 + |xi|baq|xi|−1

]
+

m∑
i=1

[
1 + 3q+ 6q2 + ....+

(
1

2
|xi|(|xi| − 1)

)
q|xi|−2 +

(
1

2
|xi|b(|xi|b + 1) + |xi|ab

)
q|xi|−1

]

= 3

m∑
i=1

[
1

2
(|xi| − 1)(|xi| − 2)

]
q|xi|−3 +

m∑
i=1

[
3

2
|xi|2 −

3

2
|xi| − |xi|ab

]
q|xi|−2

+

m∑
i=1

[
1

2
(|xi|a + |xi|b)2 +

1

2
(|xi|a + |xi|b) + |xi|ab

]
q|xi|−1

=

[
3m

2
(n− 1)(n− 2)

]
qn−3 +

[
3mn

2
(n− 1)−

m∑
i=1

|xi|ab

]
qn−2

+

[
mn

2
(n+ 1) +

m∑
i=1

|xi|ab

]
qn−1.

□

Definition 3.13. [7] Two words x, y ∈ Σ∗
k are said to satisfy q−weak ratio

property denoted by x ∼qwr y if |x|ai
= t|y|ai

, for all ai ∈ Σk, with t a nonzero
rational constant and for each 1 ≤ i ≤ k − 1, either one of (C1) or (C2) holds
true, where (C1) and (C2)are as follows:
(C1) : |x|ai

= |x|ai+1
and |y|ai

= |y|ai+1

(C2) :
Sx,ai(q)

Sy,ai
(q)

=
q|x|ai+1 − q|x|ai

q|y|ai+1 − q|y|ai

, where q ̸= 0 and |x|ai
̸= |x|ai+1

, |y|ai
̸=

|y|ai+1
.

Theorem 3.14. [13] For nonempty arrays X, Y over Σ2 we have P(X) ∼wr

P(Y ) whenever X ∼wr Y , where P is the Prouhet array morphism.

Theorem 3.15. If the nonempty arrays X, Y over Σ2 satisfy q−weak ratio
property (i.e X ∼qwr Y ) then their images under Prouhet array morphism P(X)
and P(Y ) also satisfy q−weak ratio property (i.e P(X) ∼qwr P(Y )).
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Proof. Consider X and Y be the arrays of sizes m × n and h × v respectively.

If X ∼qwr Y then |X|a
|Y |a = |X|b

|Y |b = β for some β ̸= 0 and |X|a = |X|b and

|Y |a = |Y |b. Let x1, x2, · · · , xm be the words in the consecutive rows of X such
that |xi|a = pi, |xi|b = qi and |xi| = n for some 1 ≤ i ≤ m. Therefore |X|a =∑m

i=1 |xi|a =
∑m

i=1 pi and |X|b =
∑m

i=1 |xi|b =
∑m

i=1 qi. Let y1, y2, · · · , yh be
the words in the consecutive rows of Y such that |yi|a = ri, |yi|b = si and

|yi| = v for some 1 ≤ i ≤ h. Therefore |Y |a =
∑h

i=1 |yi|a =
∑h

i=1 ri and

|Y |b =
∑h

i=1 |yi|b =
∑h

i=1 si. By Theorem 3.14, we have P(X) ∼wr P(Y ). It
is enough to prove that |P(X)|a = |P(X)|b and |P(Y )|a = |P(Y )|b. By Theorem
3.9, it is also shown that |P(X)|a = |P(X)|b = 3mn and |P(Y )|a = |P(Y )|b = 3hv
when q = 1. Therefore we have P(X) ∼qwr P(Y ). □

Theorem 3.16. [4] Let the column concatenation (row concatenation) of two
arrays X, Y over Σ2 such that ith row of X and ith row of Y satisfy q−weak
ratio property then their Parikh q−matrix commute.

Now we extend Theorem 3.16 for Prouhet array morphism as follows.

Theorem 3.17. Let the column concatenation (row concatenation) of two ar-
rays X, Y over Σ2 such that their Parikh q−matrix commute then the Parikh
q−matrix for the images P(X) and P(Y ) under Prouhet array morphism are also
commute.

Proof. Let X = rows(x1, x2, · · · , xm). By applying Prouhet array morphism on
xi (1 ≤ i ≤ m) yields three consecutive rows of words in P(X). Let we call
these rows ui, vi, wi (1 ≤ i ≤ m). Then P(X) is an array with 3m rows that
is P(X) = rows(u11, v11, w11, u21, v21, w21, · · · , ui1, vi1, wi1, · · · , um1, vm1, wm1).
Similarly since Y = rows(y1, y2, · · · , ym) we have P(Y ) = rows(u12, v12, w12, u22,
v22, w22, · · · , ui2, vi2, wi2, · · · , um2, vm2, wm2) where ui2, vi2, wi2 are the rows of
words by applying Prouhet array morphism on yi (1 ≤ i ≤ m).In order to
prove that Parikh q−matrix for the images P(X) and P(Y ) under Prouhet array
morphism are commute, it is enough to show that ui1 ∼qwr ui2, vi1 ∼qwr vi2 and
wi1 ∼qwr wi2. By Theorem 3.14 we have shown that ui1 ∼qwr ui2, vi1 ∼qwr vi2
and wi1 ∼qwr wi2. Therefore by using Theorem 3.16, we get

Rq(X ◦ Y ) = ψq(u11u12)⊕ ψq(v11v12)⊕ ψq(w11w12)⊕ · · · ⊕ ψq(ui1ui2)⊕
ψq(vi1vi2)⊕ ψq(wi1wi2)⊕ · · · ⊕ ψq(um1um2)⊕ ψq(vm1vm2)⊕ ψq(wm1wm2)

= ψq(u12u11)⊕ ψq(v12v11)⊕ ψq(w12w11)⊕ · · · ⊕ ψq(ui2ui1)⊕
ψq(vi2vi1)⊕ ψq(wi2wi1)⊕ · · · ⊕ ψq(um2um1)⊕ ψq(vm2vm1)⊕ ψq(wm2wm1)

= Rq(Y ◦X).

Similarly we can show that Cq(X ◦ Y ) = Cq(Y ◦ X). Therefore Parikh q−matrix for the

images P(X) and P(Y ) under Prouhet array morphism are commute. □

4. Conclusion

We have consider Prouhet array morphism and developed formulae for com-
puting q-counting scattered subwords of the image of any arrays under this array
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morphism. Also derived certain properties related to q-counting scattered sub-
words and Parikh q−matrices of the image arrays under this morphism. In future
work, it will be interesting to construct q-equivalent arrays whose images under
Prouhet array morphism are not q-equivalent and also to analyze the behavior
of Parikh q−matrices of picture arrays under s−shuffle operator.
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