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VARIOUS TYPES OF (p,q)-DIFFERENTIAL EQUATIONS
RELATED WITH SPECIAL POLYNOMIALS

JUNG YOOG KANG

ABSTRACT. We introduce several higher-order (p, q)-differential equation
of which are related to (p,q)-Bernoulli polynomials. We also find some
relations between (p, ¢)-Bernoulli, (p, ¢)-Euler, and (p, ¢)-Genocchi polyno-
mials.
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1. Introduction
For any n € C, the (p,¢)-number is defined by
Pt —q"
Nlpg=——.
g = £

Wachs and White [9] introduced the (p, ¢)-numbers in mathematics literature
in certain combinatorial problems without any connection to the quantum group
related to mathematics and physics literature, see [4], [5] [9].

Definition 1.1. [1], [8] Let z be any complex numbers with |z| < 1. The two
forms of (p, g)-exponential functions are defined by

ep,q(2) = ZP(Z) = R Epq(2) = Z q(’;) z
n=0 n=0

[1]p,q! []p,q!

n
1

In [2], Corcino made the theorem of (p, ¢)-extension of binomials coefficients
and found various properties which are related to horizontal function, triangular
function, and vertical function.
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Definition 1.2. [2] Let n > k. (p, ¢)-Gauss Binomial coefficients are defined by

[”} _ []p,q
k p.q [n — klpq![K]p,q!
where [n]p,q! = [n]p,q[n — Upg - [Lp,q-

Definition 1.3. [1], [8] (p, ¢)-derivative operator of any function f, also referred
to as the Jackson derivative, is defined the as follows:

f(pz) — f(q)

P;q.f( ) (p q)x .’17750,
and D, ,f(0) = f'(0).
Let p =1 in Definition 1.3. Then, we can remark
_ f(=) - flgz)
Dy f(z) = T U—gz z #0,

we call Dy is the g-derivative.

Theorem 1.4. [1], [6] The operator, D, 4, has the following basic properties:

(i) Derivative of a product — Dy 4(f(x)g(x)) = f(pz)Dpq9(x) + g(qz) Dy ¢ f (x)
= g(pm)Dp,qf(x) + f(qx)Dp,qg(x)'

(1) Deriwative of a ratio Dy 4 (f(x)) - ola) p7qf((;l)_( " x) D)Prat(®)

9w2) Dy qf(x) = f(p2) Dy qg(z)

9(pz)g(qz)

In 2016, Araci et al.[1] introduced a new class of Bernoulli, Euler and Genocchi
polynomials based on the theory of (p,¢)-numbers and found some properties
and identities. After that, several studies have investigated the special functions
for various applications, see [3], [6], [7].

Definition 1.5. [3] (p,q)-Euler numbers &, , , and polynomials &, , 4(z) are
defined by

o0

2 " 2
£ - B L plt).
Z P nlpe! epg(t) +1 ; PP ! epg(t) +1771

Consider p = 1 in Definition 1.5. Then, we note

> tn 2 > tn 2
En, = , EnqlT = eq(tz),
2 Enafy = oya1 2@ = Lt

where &, 4 is the ¢g-Euler number and &, () is the ¢-Euler polynomials.
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Definition 1.6. [3] (p, ¢)-Genocchi numbers G, 5, 4 and polynomials G, ; 4(x)
are defined by

- tn 2t - tn 2t
7;) P! epg(t) +17 ; npal?) Mlp.q!  epq(t) +1 (i)

Consider p = 1 in Definition 1.6, we note
oo [e.e]
" 2t t" 2t
G, = , Grq() = eq(tz),
,;) Tnlg!  eq(t) +1 nz:;) Tl eqg(t) +17°

where G, 4 is the ¢-Genocchi numbers and G, 4(z) is the ¢-Genocchi polynomi-
als.

Definition 1.7. [3] (p, ¢)-Bernoulli numbers B, , ; and polynomials B, , 4(x)
are defined by

= t
2 Prray)

Putting p = 1 in Definition 1.7, we can note

(lf) -1’ Z Bnm’q(x)[ o = ! ep,q(tz).
n=0

n]p,q! epq(t) =1

n
|

p.q- €p,q

S " t > . .
;Bn,q [n]q! N eqt) =1 ;Bn’q(x) [n],! - eq(t) — 16q(tm),

where B, 4 is the ¢g-Bernoulli numbers and B, 4(z) is the ¢-Bernoulli polynomi-
als.

2. Main results

We construct several (p, q)-differential equation for (p,¢)-Bernoulli polyno-
mials. We also find some relations between (p, ¢)-Bernoulli, (p, q)-Euler, and
(p, q)-Genocchi polynomials.

Theorem 2.1. Let [n],,, # 0. Then, we have
Dyp.g.2Bn.pq(®) = [n]p.gBn-1p.q(pT).

Proof. From the generating function of (p, ¢)-Bernoulli polynomials, we have
a relation as

S B N B S e
n,p,q ($) [n] 1 n,p,q [n] | p 4 [n] |
n=0 p,q- n=0 pPa: ,—o p,q- (2 1)
e’} n n (n—k) - m
= E E il P 7/ Brpa® O
n=0 \k=0 P,q p.q:

Comparing the coefficients of the both-sides in Eq. (2.1), we obtain

" n n—k n—
Bnapvq(m) = Z |:]€:| p( 2 )Bk,p,qaj k (22)
k=0

p.q
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By applying (p, ¢)-derivative in Eq. (2.2), we find

" n n—k e
DY) o Bnpa(@) = Z [kl pl"2 )Bk,pqugg,zx k
k=0 L 4P

n (2-3)
n n—k—1 n—k—
- z [kj [n— k]p,qp( 2 )Bk,P,q(px) ot
k=1L 4pa
From Equations (2.2) and (2.3), we find the required result. O

Corollary 2.2. Considering p =1 in Theorem 2.1, one holds
Dg,uByq(x) = [n]qBn-1,4(z),
where Dy is q-derivative, [n], is g-number, and By, 4(x) is the g-Bernoulli poly-
nomaals.
Corollary 2.3. Considering p=1,q — 1 in Theorem 2.1, one holds
d
dx

where By, (x) is the Bernoulli polynomials.

B, (z) =nB,_1(x),

Corollary 2.4. From Theorem 2.1, we have
k

() [n],.4!
mBnkypyq(pkx)

Theorem 2.5. The (p, q)-Bernoulli polynomials B,, 4(x) satisfies the following
higher-order (p, q)-differential equation.

D) Bn-,p-,q(ff) =

p,q,r

1 n 1 . o
[n] 'DI(]"I)’IBn’p’Q(p z) + WDé,q,ag)Bn,p,q(p ( 1);1:)
p,q* p,q-
1 a 1 B
4ot [3]pq!D§3(37mBn,p,q(p 32) + [2]pq!DI(3;,mBn,p,q(p 2)
n—1
+ D;?(lenvpvq(pilx) - [n}p,qp( 2 )1,77,71 = 0'

Proof. In order to find higher-order (p, ¢)-differential equation, we consider
ep,q(t) # 1. Then, (p, ¢)-Bernoulli polynomials can be transformed as

ZBn,p,q(x)% (Zp(g) tn - 1) S [nl]fn )
n=0 p,q- ! o

0 [n]p.q Pq

By using Cauchy product and comparison of coefficients, we find

" n k n=1y
Z LJ p(2)B”*k,p,q($) = Bupq(@) = [n]p,qp( 2)gnL, (2.4)
k=0 L 4Dpq
From Corollary 2.4, we can note
G, !
D) By pq(pFz) = pi_[ Jp.q By kpq(). (2.5)
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Replacing Eq. (2.5) in the left-hand side of Eq. (2.4), we find

n n .
Z {k] p(2)B"—km7q(l’) — Bnpq(®)
k=0 - dp.a
" ) (2.6)
= (] ,D;(ylfg,mBmp,q(p_kx) — Bupq(@).
k=0 \IPd
From Equations (2.4) and (2.6), we derive
n 1 _ n—1 n—
Z (k] lDz(jf«i:vBmp?q(p kx) — Bnpq(2) — [n]thp( 2)gn 1l = 0,
k=0 ’
where the required result is completed at once. O

Corollary 2.6. Putting p =1 in Theorem 2.5, one holds

1 1
—Dé@)qu(m) +

(n—1) ..
[n]4! b Buale)+

11

1 1 n
Df(z,Ba):qu(x) DIS?Q)anvq('r) + D((;,la)cqu(x) - [”]qm t= 0,
q- q-

where D((J") is the g-derivative, B, 4(x) is the g-Bernoulli polynomials.

Corollary 2.7. Settingp =1,q — 1 in Theorem 2.5, one holds

1 d" 1 ar—1 1 dn—2
— L Bu(@) + 1 Bu(a) + —— B, (a) + - -
n! dzn () + (n—1)! dan—1 () + (n—2)! dan—2 (z) +

1 @ 1 42 d @ o

where By (z) is the Bernoulli polynomials.

Theorem 2.8. The (p, q)-Bernoulli polynomials By, p () satisfies the following
higher-order (p, q)-differential equation which is combined (p,q)-Euler numbers
and polynomials.

Eﬂxpan—" gn’P,q(l) 1(7nq) an,p,q($> + Pd

p(2)[n]p7q! . p( 2 )["* 1p,q!

52,11,11 + 52,p,q(1)
p[2]p.q!

+ (E0,p,q + €0,p,q(1) = 2) By pq(z) = 0,

En—1p,q + En—1,p,9(1) y(n—
P = z(:q,ml)Bn,p,q(x) +--

+ D) \Bupa(@) + (E1pg + E1pg(1) D) o Brup (@)

p.q,T

where &, p ¢ is (p, q)-Euler numbers and &, p o(x) is the (p, q)-Euler polynomials.
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Proof. From the generating function of (p, ¢)-Bernoulli polynomials, we con-
sider the equation

. tn t
Bpq(2) = epq(tx)
nzzo P gl epg(t) =17
1 2 2 t
= — t - < t .
2 (ep,q(t) +1 ’ ep,q(t) + 16p7q( )> ep,q(t) — 1ep’Q( ™) @7)
1 oo n " m
9 Z Z k (Ekpog + Ehpg(1)) Br—k,p,q(@) Tl
n=0 \k=0 - P P,
In Eq. (2.7), we obtain a relation as
“~ [n
2B00) =3 |1 (Ea+ EupaBaipale) (29)

k=0 p,q

.
WOt p ) in B, (28), we find

[n—klp,q!

. k
Applying DY) o Bnp.q(z) =

n

gk,p,q + gk7p7q(1) k
Z (k) : Dz(ug,an’P’q (p
=0 P\ [k]pq!

From the above equation, we obtain the required result. O

_km) - 2Bn,p,q(x) =0.

Corollary 2.9. Setting p =1 in Theorem 2.8, one holds
Eng + gn,q(l) En-1,4+ gn—l,q(l) (n—1)
! = 1],! Dy, B g(x)+ -
LGt 52',(1(1)
[2],!
+ (&o,q + €0,4(1) —2)By, 4(x) =0,

D((J?;CBT%Q(I) +

Dé,Qo);Bn,q(x) + (5141 + 517q(1))D((1,1z)Bn,q(1‘)

where Dén) is the g-derivative, &, 4 is g-Euler numbers, and &, 4(x) is the g-
FEuler polynomials.

Corollary 2.10. Setting p=1,q — 1 in Theorem 2.8, one holds

gn +gn(]-) dar gn—l +gn—1(1) dn71
B, B,

n! dxm (@) + (n—1)!  dzn! (@) +
Ey + E(1) d?

n s + &2(1)

o 3 Bal@) + (& + 51(1))%3,1(3@) + (€0 + Eo(1) = 2)Ba(z) = 0,

where &, is the Euler numbers and E,(x) is the Euler polynomials.

Theorem 2.11. The (p, q)-Bernoulli polynomials By, ;, 4(x) satisfies the follow-
ing higher-order (p,q)-differential equation which is combined (p,q)-Genocchi
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numbers and polynomials.
GN,P,Q + Gn’P’q(l) D(n)

p,q,an,P,Q(p_nw)

n

p(2) [1]p,q!
anl,p,q + anl,p,q(l)
+ P
P( 2 )[n —1p,q!
G2,p,q + G2,p,q(1)
p[2]p,q!
+ (Gop,g + Go,p,g(1)) B p,q(®) — 2[n]p,gBn—1,p,q(x) =0,

where Gy, p 4 1 the (p, q)-Genocchi numbers and Gy, p () is the (p, q)-Genocchi
polynomials.

D("_l)Bn,p’q(p_("_l)x) 4.

p,q,T

ng?;,an,pyq(p_(Q)f) + (G1pg + Glypyq(1))D1(J27erp,q(p_lx)

Proof. From the generating function of B,, , ,(x), we have a relation as

oo tn
Brpq(®)
7;) P8 n]p,q!

1 2 " t )
2t \epg(t) +1 ezuq(t)JFlep’q epq(t) — 1P

1 %) n n m
o 7;) (kz_o [k} p’q(G’W,q + Gk,p,q(l))Bn—km,q(l")) 7[”],)7,1!'

In a similar way of Theorem 2.5, we derive the following equation.

1 n
Bt = 5 3 (o] G+ Grpal1) Buipafo).
p,q

k=0

From the equation above, we find the desired result. O
Corollary 2.12. Setting p =1 in Theorem 2.11, the following holds

G, + Gng(l) Gn1,4 + Gn-1,4(1)

Dé?an,q(x) + Dz(zflxil)Bn,q(x) +oe

[n]q! [n —1]g!
Gag+ GQ, (1)
= [2](]' 1 D((J,QTBTMI(‘T) + (Gl,q + Gl,q(l))Dé?Tqu(I)

+ (Go,g + Go,4(1))Bp g(z) — 2[n]¢Bp-1,4(x) =0,

where Dg") is the q-derivative, Gy, 4 is the ¢-Genocchi numbers, and Gy, 4(x) is
the q-Genocchi polynomials.

Corollary 2.13. Putting p=1,q — 1 in Theorem 2.11, the following holds

Gn + Gn(l) dr Gno1+ Gn_l(l) dn_l Go + Gg(l) d2
n! dx™ Bn() + (n—1)! dxn—1t Bn(@) 4+ 2! dz? n(®)

+(G1 + Ga(1) - Ba(@) + (Go + Go(1) Brg(@) — 20Br 1 (@) =0,

where Gy, is the Genocchi numbers and Gy (z) is the Genocchi polynomials.
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Theorem 2.14. Let a« #0, B #0, and 0 < g < 1. Then, we find

a"B

70,4 y(n) -1, -n A" BBy 1pg (n—1) —1, —(n—1)
) le,q,a:B npa(Q P "T) + ™) 'Dpﬂmc B pgla™p )
p\2/[n]p 4! pL 2 [n—1]p !
O‘n7252Bn 2 n— 1 —(n—
+ H—MD;& s 2)Bn,p,q(05 1]) ( 2)1‘) 4

p( 2 )[n —2]p,4!
+af" By Py qu(o ; an,p,zz(O‘ilpilx) + BHBOw@Bn,p,q(Oflx)

an n_lOéBn B
= D) B (300 + L D DB, (57 )
p 2/ [n]p,q!

p,q,x
B 202 B2 - S
g g re BraaF 07 ) 4
p n = 2lp,q:

+ Ba""'By . qD1(9 (3 eBnpa(B7'p710) + " Bop g B p (B ).

n—1

p("2 )= 1],

Proof. To find a symmetric property of higher-order (p, q)-differential equa-
tion for (p, ¢)-Bernoulli polynomials, we consider a form A as

A= (aBt)?ep,q(tx)
(ep,q(at) —1)(epq(Bt) — 1)

From the form A, we obtain

o apft aft
4= epqlat) —Lley ,(Bt) — 1€P,q(t$)

o n i (2.9)
n — _
- Z Z [k} ot k+lBk’p’an7k,p,q(B lx) R
n=0 \k=0 P,q [n}p,q~
and
abt apt ep q(tx)
B epq(Bt) —Lepq(at) — 1 P
00 " R 3 i (2.10)
= Z Z k' /8 a Bk’P’an*k,:D,q(a ‘,I:) [TL] I
=0 \k=0 Dyq p.q-
Comparing Eq. (2.9) and (2.10), we have
- n n— —
Z [/ﬂ] QBB g Bakpq (B )
S (2.11)

n n—k _
= Z |:k:| B a k+1Bk7:D7an—/€,p,q(O‘ 117)
pyq

k=0
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Using a relation of By,_j p () and D,(,{;?mBn,p,q(x) to Eq. (2.11), we derive

n k n—k

B
3O 5 P Brrapw B, . (0 pEe)
Gk Ip,q!

k=0
5k “*Bip, .
- Z - qu(fg,an,p,q(ﬁ 1]) kI)-
) k]!
Therefore, we COmplete the proof of Theorem 2.14. 0

Corollary 2.15. Setting « =1 in Theorem 2.1/, one holds

B * By, p, 8% By, p, 1 -
Z o Dy e Bapa®” Z 20 D) Brpa(B7' ),
(3) O
k=0 P‘\? [k]pq k=0 P\? [k]pq

Corollary 2.16. Considering p =1 in Theorem 2,14, the following holds

n kon—k k

a7 By, B a Bk _
D T DidBug(a”te) Ei DBy (57 ).
k=0 a°

where D, is q-derivative, B, 4 is the q—Bernoulli numbers and B, 4(x) is the
q-Bernoulli polynomials.
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