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Abstract. In this paper we suggest an enhanced Geraghty-type contractive mapping

for examining the existence properties of classical nonlinear operators with or without

prior degenerates. The nonlinear operators are proved to exist with the imposition of

the Geraghty-type condition in a non-empty closed subset of complete metric spaces. To

showcase some efficacies of the Geraghty-type condition, convergent rate and stability are

deduced. The results are used to study some asymptotic properties of perturbed inte-

gral and hypergeometric operators. The results also extend and generalize some existing

Geraghty-type conditions.

1. Introduction

Application of Banach’s contraction map [3] in the area of applied and social
sciences has birthed many general concepts by abstracting some common proper-
ties of Banach’s condition. Two of these general concepts appear in [11, 20]. The
Banach-type map is reformulated by:

(1.1) d(Tx,Ty) ≤ α(d(x, y))d(x, y), ∀x, y ∈ X,

where X is a complete metric space and T is a self-map of X. In [11], if F =
{α|α : R+ → [0, 1)} is a class of functions for which α(sn) → 1 (not continuous)
implies sn → 0, then T has a unique fixed point. Then again in [20], it is proved
that if α : R+ → [0, 1) is a monotone decreasing function, then T satisfies (1.1).
The former and latter results have prompted several generalizations in the last few
decades. Presently, there exists a vast amount of literature on the results concerning
the Geraghty map. In [12], a generalized Geraghty-type for the class of functions
ψ : R+ → R+ is proved under the condition

(1.2) ψ(d(Tx,Ty)) ≤ α(ψ(d(x, y)))ψ(d(x, y)), ∀x, y ∈ X,
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in partially ordered set (X,≤) with α ∈ F. Also see [6] for an improvement on (1.2)
in modular metric spaces. Martnez-Moreno et al. [14] studied the common fixed
point theorems of Geraghty-type for the two mappings S,T : X → X such that T
has the S-monotone property and satisfies

(1.3) d(Tx,Ty) ≤ α(d(Sx, Sy))d(Sx, Sy), ∀x, y ∈ X.

In [5], a generalized (ψ, α, β)−Geraghty type condition for the three maps R, S,T
satisfying

(1.4) ψ(d(Tx,Ry)) ≤ α(d(Sx, Sy))β(d(Sx, Sy)), ∀x ≥ y.

was introduced and proved in the framework of partially ordered metric spaces.
Another recent extension was proved in [10] for the set of all functions α : [0,∞) →
[0, 1s ) satisfying

(1.5) d(Tx,Ty) ≤ α(M(x, y))d(M(x, y)), ∀x, y ∈ X.

where M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty), 1
2s [d(x,Ty) + d(y,Tx)]}.

Few results regarding the admissibility of the Geraghty-type operators can be seen
in [2, 7, 13, 19]. Some related results to the contractive condition in [20] shall be
treated as consequences in the main results. Though, the results above are suitable
for studying the existence properties of nonlinear self-maps satisfying Geraghty-
type conditions with α ∈ F. However, some results regarding the estimates such as
convergent rate and stability have received low attention concerning perturbations
of the operator T. This is because as α→ 1, the estimates become costly, and worse
if eventually α attains 1 (nonexpansive case, where no refinement is not allowed).
In this case, the fixed point of T is degenerate and a problem of its finding is a prior
unstable (see page 8 [1]). Motivated by the above reasons, the present paper suggests
a quasi-Geraghty contractive condition to study both the existence properties and
the effectiveness of some nondegenerate nonlinear operators with applications to
perturbed integral operators and hypergeometric-type operators.

2. The ϑ-Quasi-Geraghty Mappings

Let T : X → X be a self-map which has, but not limited to, the following
properties:

I. d(Tx,Ty) ≤ λd(x, y);

II. d(Tx,Ty) ≤ λd(x,Tx);

III. d(Tx,Ty) ≤ λd(y,Ty).

at some distinct points x, y ∈ X and for λ ∈ [0, 1). The map T is called λ-
pseudocontraction if it satisfies at least one of the conditions I - III and λ-contraction
if condition I holds, see [24]. In what follow, λ-pseudocontraction map is likened to
the class of F.
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Lemma 2.1. Suppose that T : X → X is λ-pseudocontraction mapping. Let
u0 ∈ X and set un+1 = Tun for n = 0, 1, 2, . . .. Then un converges to a unique
fixed point if and only if there exists λ ∈ F such that for all n,m ∈ N, at least one
of the conditions I - III hold.

Proof. Obviously, condition I is an analogous of (1.1) if λ ∈ F. So let u0 ∈ X and
assume that un converges to a unique fixed point p. It suffices to prove that the
constant function λ ∈ F exists. Define λ : R+ → R+ by

λ(tn) = sup

{
d(Tun, Tum)

d(un, un+1)
: tn ≤ d(un, un+1)

}
Since T is a λ-pseudocontraction map (II), the above quotient does not exceed 1.
Let tn = d(un−1, un), then α(tn) → 1, and indeed, tn → 0 as n → ∞ since un
converges.
Next, assume that λ ∈ F exists, that is, λ(tn) → 1 for each tn in R+. We show
that T is asymptotically regular and tn → 0. Since un = Tnu0 for n = 0, 1, 2, . . .,
by hypothesis:

tn+1 = d(un, un+1) = d(Tnu0,T
n+1u0)

≤ λ(d(Tn−1u0,T
nu0))d(T

n−1u0, T
nu0)

= λ(tn)tn

Since λ ∈ F, the last inequality implies that

tn+1 ≤ tn.

Hence, tn is a nonincreasing nonnegative terms, and thus converges to a nonnegative
real number ϵ for which

ϵ = lim inf
n→∞

tn.

By replacing n = nk, it follows that ϵ→ 0.
Now assume that un is not Cauchy. For given ε > 0, there are positive integers mk

and nk with nk > mk > k such that d(umk
, unk

) ≥ ε.
But, by hypothesis of the lemma, it follows that

ε ≤ d(umk
, unk

) ≤ λ(tmk−1)tmk−1 → 0

This violates the latter condition. Hence, un is Cauchy and by completeness, un
converges to a unique fixed point in X. Condition III also follows. 2

Now, let F∗ be a class of finite functions (α1, α2, . . . , αq0) for q0 ∈ N such
that for each i ∈ {1, 2, . . . , q0} there corresponds a set of independent nonnegative
terms {tn,1; tn,2; . . . ; tn,q0}, for each tn,i ∈ R+, with the property that each function
αi(tn,i) → 1

q0
implies tn,i → 0 as n→ ∞ and that

(2.1) α1(tn,1) + α2(tn,2) + · · ·+ αq0(tn,q0) → 1
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Observe that for q0 = 1, the class F∗ is a refined form of F or simply a subclass
of F. Also, if tn,i = tn, then the characterisation (2.1) is similar to the results in
[6, 16], see also [21] for earlier work.
Motivated by Lemma 2.1, let T : X → X be a self-map satisfying the λi-
pseudocontraction like conditions with independent inputs
{t1; t2; tp0} = {d(x, y); d(x, Tx); d(y, Ty)} such that for p0 < q0,

(2.2) d(Tx,Ty) ≤ (λ1(tn,1)t1 + λ2(tn,2)t2 + λp0(tn,p0)tp0) p
−1
0

By resolving in terms of t1 and t2 while tp0 is restrained, this gives

(2.3) d(Tx,Ty) ≤ λ1(tn,1)
(1 +

λp0 (tn,p0 )

λ1(tn,1)
)

p0 − λp0(tn,p0)
t1 + λ2(tn,2)

(1 +
λp0 (tn,p0 )

λ2(tn,2)
)

p0 − λp0(tn,p0)
t2

If λ1(tn,1) and λ2(tn,2) grow when λp0(tn,p0) diminishes. Then, inequality (2.3) is
equivalent to

(2.4) d(Tx,Ty) ≤ α1(tn,1)
2

p0
t1 + α2(tn,2)

2

p0
t2

where p0 > 0; α1(tn,1) and α2(tn,1) are in F∗ with the property that α1(tn,1) +
α2(tn,2) → 1. If p0 = 2, then

(2.5) d(Tx,Ty) ≤ α1(tn,1)t1 + α2(tn,2)t2

The inequalities (2.4) and (2.5) shall be formalised in the sequel. Before then, the
following class of test functions are defined.

Definition 2.2. For q0 = 2, the set F∗ is the class of functions αi : R+ → [0, 12 )
with the property that αi(tn,i) → 1

2 implies tn,i → 0 for i = 1, 2.

Definition 2.3. Let Φ be the class of functions ϑ : [0,∞) → [0,∞) with the
property that

ϑ1: ϑ is lower semi-continuous and non-decreasing function;

ϑ2: ϑ(t) < t;

ϑ3: ϑ(t) = 0 if and only if t = 0; and

ϑ4: ϑ is subadditive.

Motivated by the above classes of functions, Lemma 2.1, conditions (2.4) and (2.5),
the ϑ−Geraghty-type map is presented as follow:

Definition 2.4. Let X be a complete metric space and T : X → X be a self map.
The map T is called a ϑ-quasi-Geraghty contractive map if it satisfies

d(Tx,Ty) ≤ α(d(x, y))ϑ(d(x, y)) + β(d(x,Tx))ϑ(d(x,Tx)),(2.6)
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for x, y ∈ X, where ϑ ∈ Φ and α, β ∈ F∗.

By comparing condition (2.4) and (2.6), the role of function ϑ is obvious.

Definition 2.5. Let X be a complete metric space and T : X → X be a self map.
The map T is called quasi-Geraghty contractive map if it satisfies

d(Tx,Ty) ≤ α(d(x, y))d(x, y) + β(d(x,Tx))d(x,Tx),(2.7)

for x, y ∈ X, where α, β ∈ F∗.

Condition (2.7) is a special case of condition (2.6) if ϑ is an identity and it is also
similar to (2.4) for p0 = 2. Both (2.6) and (2.7) are class of general nonlinear
contractive maps of second kind of the form

(2.8) d(Tx,Ty) ≤ ψ1(s) + ψ2(t), for x, y ∈ X,

where ψ1, ψ2 are upper semi-continuous functions and s, t ∈ [0,∞), see [22]. So,
these conditions are independent and have advantages over other like conditions in
the literature.

3. Main Results

In this section, the existence properties and stability of the nonlinear self-
operator T : K → K are established and proved with the imposition of conditions
(2.6) and (2.7). The convergent rate of the quasi-Geraghty conditions is deduced
and compared using practical examples.

Theorem 3.1. Let K be a nonempty closed subset of a complete metric space (X, d)
and T : K → K be a Picard map satisfying (2.6) for which ϑ ∈ Φ and α, β ∈ F∗.
Then, for any initial seed x0, the sequence {xn} given by the Picard map T has a
unique fixed point.

Proof. Let x0 ∈ K and let xn be defined by the Picard sequence

xn+1 = Txn, n = 0, 1, 2, . . .

By the condition (2.6), there gives

d(xn, xn+1) = d (Txn−1,Txn)

≤ α (d(xn−1, xn))ϑ (d(xn−1, xn))

+ β (d(xn−1,Txn−1))ϑ (d(xn−1,Txn−1))

This further implies that

d(xn, xn+1) ≤ [α (d(xn−1, xn)) + β (d(xn−1, xn))]ϑ (d(xn−1, xn))(3.1)

Since α, β ∈ F∗, the last inequality reduces to

d(xn, xn+1) ≤ ϑ (d(xn−1, xn))
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More so, since ϑ ∈ Φ, thus,

d(xn, xn+1) ≤ d(xn−1, xn)

This implies that d(xn, xn+1) is nonincreasing nonnegative term, and thus converges
to a nonnegative real number ϵ such that

ϵ = lim inf
n→∞

d(xn, xn+1) = lim inf
n→∞

d(xn−1, xn)

By taking limit of inequality (3.1) as n→ ∞ and using the properties on ϑ, α and
β, we obtain

ϵ ≤ [α(ϵ) + β(ϵ)]ϑ (ϵ) < ϵ

This contradicts the hypothesis. Hence,

ϵ = lim inf
n→∞

d(xn, xn+1) = 0(3.2)

Next is to prove that {xn} is a Cauchy sequence. On contrary, suppose {xn} is not
Cauchy, Then for given ε > 0, there exist positive integers mk and nk such that
nk > mk > k for all positive integer K,

(3.3) d(xnk
, xmk

) > ε and d(xnk
, xmk−1) ≤ ε

Using (3.2) and triangle inequality in (3.3), we have the following:

ε < d(xnk
, xmk

) ≤ d(xnk
, xmk−1) + d(xmk−1, xmk

) ≤ ε

Taking limit as k → ∞, we obtain

(3.4) lim
k→∞

d(xnk
, xmk−1) = ε

Thus, by using (2.6), (3.2), (3.4) and triangle inequality, there results

ε < d(xnk
, xmk

) ≤ d(xnk
, xnk+1) + d(xnk+1, xmk

)

= d(Txnk
,Txmk−1)

≤ α (d(xnk
, xmk−1))ϑ (d(xnk

, xmk−1))

+ β (d(xnk
,Txnk

))ϑ (d(xnk
,Txnk

))

= α (d(xnk
, xmk−1))ϑ (d(xnk

, xmk−1))

+ β (d(xnk
, xnk+1))ϑ (d(xnk

, xnk+1))

Applying limit as nk → ∞ to the last inequality, we get

ε < α (ε)ϑ (ε)
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Since α ∈ F∗ and ϑ ∈ Φ, then

ε <
1

2
ε

This contradicts ε being a positive real number. Therefore, {xn} is a Cauchy
sequence. By the completeness of X, xn converges to x∗ ∈ X.
Next is to prove that Tx∗ ∈ X, that is, x∗ = Tx∗. By (2.6) and triangle inequality,
we have

d(Tx∗, x∗) ≤ d(Tx∗,Txn) + d(xn+1, x
∗)

But then,

d(Tx∗,Txn) ≤ α (d(x∗, xn))ϑ (d(x
∗, xn)) + β (d(xn, xn+1))ϑ (d(xn, xn+1))

By (3.2) and convergence of xn, ϑ (d(x
∗, xn)) → 0 and ϑ (d(xn, xn+1)) → 0 as

n→ ∞.
Thus, T is continuous on X. Therefore, d(Tx∗, x∗) = 0 if and only if x∗ = Tx∗.
Next, assume that x∗ and y∗ are two fixed points of T with d(x∗, y∗) ̸= 0. Then,
by hypothesis

d(x∗, y∗) = d(Tx∗,Ty∗) ≤ α (d(x∗, y∗))ϑ (d(x∗, y∗)) + β (d(x∗,Tx∗))ϑ (d(x∗,Tx∗))

By the properties on α, β and ϑ, this reduces to

d(x∗, y∗) ≤ 1

2
d(x∗, y∗)

Hence a contradiction. Therefore, x∗ = y∗. 2

Remark 3.2. If ϑ(s) ≡ s, for all s ≥ 0 in the condition (2.6), then the proof is
analogue of Theorem 3.1.

Example 3.3. Let X = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3)} be a 2D diamond-
pentagon set endowed with the taxicab metric
d(y, z) = |y1 − z1|+ |y2 − z2| for all y = (y1, y2) and z = (z1, z2) in X. Also, let T
on X be a self-map defined as follows:

T (y1, y2) =

{
(y1, 1); y1 ≤ y2
(2, y2); y1 > y2

with ϑ(t) = t, for t ∈ R+.

It is easily verified that the fixed nodes are (1, 1) and (2, 1). Then, the map T
satisfies all hypotheses of Theorem 3.1. It is worthy to note that the condition (2.6)
in Theorem 3.1 is weaker than those in the previous studies.

Corollary 3.4. Let K be a nonempty closed subset of a complete metric space
(X, d) and T : K → K be a Picard map satisfying (2.6) for which ϑ ∈ Φ and
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α, β : [0,∞) → [0, 12 ) are monotone decreasing. Then, for any initial seed x0, the
sequence {xn} given by the Picard map T has a unique fixed point.

Proof. Obviously, such α, β are in the subclass F∗. 2

Corollary 3.5. Let K be a nonempty closed subset of a complete metric space
(X, d) and T : K → K be a Picard map satisfying (2.6) for which ϑ ∈ Φ and
α, β : [0,∞) → [0, 12 ) are monotone increasing. Then, for any initial seed x0, the
sequence {xn} given by the Picard map T has a unique fixed point.
This follows from Corollary 3.4.

Corollary 3.6. Let K be a nonempty closed subset of a complete metric space
(X, d) and T : K → K be a Picard map satisfying (2.6) for which ϑ ∈ Φ and
α, β : [0,∞) → [0, 12 ) are continuous test functions. Then, for any initial seed x0,
the sequence {xn} given by the Picard map T has a unique fixed point.
Immediate from Corollary 3.4.

Corollary 3.7. Let K be a nonempty closed subset of a complete metric space
(X, d) and T : K → K be a Picard map satisfying (2.6) for which ϑ ∈ Φ and
α, β : [0,∞) → [0, 12 ) are constant functions such that α + β < 1. Then, for any
initial seed x0, the sequence {xn} given by the Picard map T has a unique fixed
point. This also follows from Theorem 3.1. See also [18] for related result.
The estimate of an operator satisfying (2.6) is presented as follow:

Theorem 3.8. Let K be a non-empty closed subset of X and let T : K → K be a
self-map satisfying (2.6) for which ϑ ∈ Φ and α, β ∈ F∗. Let F (T ) be a non-empty
set of all fixed points in K. Then, the sequence {xn} defined by the Picard iterative
process converges to the fixed point x∗ ∈ F (T ) with the following estimate:

(3.5) d(xn, x
∗) ≤ 1

pn0
d(x0, x

∗), p0 > 2

Proof. Suppose T satisfies condition (2.6), by Theorem 3.1, T has a fixed point
x∗ ∈ F (T). Now, select x0 ∈ K and let xn be a Picard sequence, then by the
property on ϑ, we have

d(xn, x
∗) = d(Txn−1,Tx

∗)

≤ α(d(xn−1, x
∗))ϑ(d(xn−1, x

∗)) + β(d(xn−1,Txn−1))ϑ(d(xn−1,Txn−1))

= α(d(xn−1, x
∗))ϑ(d(xn−1, x

∗)) + β(d(xn−1, xn))ϑ(d(xn−1, xn))

≤ α(d(xn−1, x
∗))ϑ(d(xn−1, x

∗)) + β(d(xn−1, xn))ϑ(d(xn−1, x
∗))

+ β(d(xn−1, xn))d(xn, x
∗)

This further implies

d(xn, x
∗) ≤ α(d(xn−1, x

∗)) + β(d(xn−1, xn))

1− β(d(xn−1, xn))
ϑ(d(xn−1, x

∗))
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Since α, β ∈ F∗, then

α(d(xn−1, x
∗)) + β(d(xn−1, xn))

1− β(d(xn−1, xn))
→ 2

implies that

d(xn, x
∗) ≤ 2ϑ(d(xn−1, x

∗))

By induction,

d(xn, x
∗) ≤ 2nϑn(d(x0, x

∗)) =
1

pn0
d(x0, x

∗) ≡ ξn,1d(x0, x
∗)

Observe that d(xn, x
∗) → 0 as n→ ∞. 2

Remark 3.9. If α ∈ F∗ and ϑ(t) = t, then the estimate d(xn, x
∗) ≤ 1

2n d(x0, x
∗) ≡

ξn,2(d(x0, x
∗) is obtained. If α ∈ F, then d(xn, x

∗) ≤ d(x0, x
∗) ≡ ξn,3d(x0, x

∗).
Both estimates ξn,2 and ξn,3 are costly compare to estimate ξn,1.

Suppose, by Theorem 3.1, that {xn} ⊂ K converges to a fixed point x∗ of T and
denote F (T ) = {x∗ ∈ K : x∗ = Tx∗} as the set of all fixed points of T. Let {yn}
be an arbitrary sequence in K and set τn = d(yn,Tyn), for n = 0, 1, 2, . . .. The
stability of an operator satisfying (2.6) is stated in the next theorem. See [17, 4, 23]
for few results on stability.

Theorem 3.10. Let (K, d) be an arbitrary closed subset of X and T is an operator
satisfying contractive condition (2.6) with the property that α, β ∈ F∗ and F (T )
is nonempty. Then, for x0 ∈ K, the sequence {xn} defined by Picard operator is
stable.

Proof. Let {yn} ⊂ K be an arbitrary sequence and let τn = d(yn,Tyn). Let
x∗ ∈ F (T ) and assume that τn → 0 as n→ ∞. Then, by hypothesis

d(yn, x
∗) ≤ d(yn,Tyn) + d(Tyn,Tx

∗)

But,

d(Tyn,Tx
∗) ≤ α(d(yn, x

∗))ϑ(d(yn, x
∗)) + β(d(yn,Tyn))ϑ(d(yn,Tyn))

Thus,

d(yn, x
∗) ≤ τn + α(d(yn, x

∗))ϑ(d(yn, x
∗)) + β(τn)ϑ(τn)(3.6)

Since τn → 0 and by the properties on α, β and ϑ, then (3.6) becomes

1

2
d(yn, x

∗) ≤ τn +
1

2
ϑ(τn) → 0, as n→ ∞(3.7)
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Hence, yn converges to x∗ ∈ F (T ).
On the other hand, suppose d(yn, x

∗) → 0 for large n, where x∗ ∈ F (T ), then by
hypothesis

τn = d(yn,Tyn)

≤ d(yn, x
∗) + d(Tx∗,Tyn)

≤ d(yn, x
∗) + α(d(x∗, yn))ϑ(d(x

∗, yn)) + β(d(x∗,Tx∗))ϑ(d(x∗,Tx∗))

= d(yn, x
∗) + α(d(x∗, yn))ϑ(d(x

∗, yn))

This further implies

τn ≤ 1

2
d(x∗, yn) → 0(3.8)

Both (3.7) and (3.8) give that τn → 0 ⇐⇒ yn → x∗.
Therefore, the operator satisfying (2.6) is stable. 2

4. Applications

The existence properties of some non-degenerate nonlinear operators given by
the solutions of differential equations (DEs), namely, perturbed Volterra and hyper-
geometric operators are studied in this section with the imposition of the ϑ-quasi-
Geragthy condition (2.6) in complete metric spaces.

4.1. Application I

Here, Theorem 3.1. is employed to study the existence theorem of solutions for
the perturbed integral equations of Volterra-like in complete metric spaces. This is
facilitated by the collection of results in [5, 10, 8, 9, 15].
Let X = C(I,R) be the set of all real-valued continuous functions defined on I =
[0, L] and d : X ×X → R+ be defined by:

(4.1) d(υ, ω) = sup
t∈[0,L]

{|υ(t)− ω(t)|}, υ, ω ∈ C(I,R).

Clearly, the pair (C(I,R), d) is a complete metric space.
Now, consider the Volterra equation

(4.2) υ(t) = f(t) +

∫
I

ρ(t, s)υ(s)ds

where f(t) ∈ X, ρ : I×I → R is a positive function with (t, s) ∈ I×I and υ(t) ∈ X.
Also, consider the problem related to the perturbed integral equation

υ(t) = f(t) +

∫
I

ϱ(t, s, υ(s))ds+

∫
I

ρ(t, s)υ(s)ds ≡ f(t; y) +

∫
I

ρ(t, s)υ(s)ds(4.3)
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where

(4.4) f(t; y) = f(t) +

∫
I

ϱ(t, s, υ(s))ds

is a perturbed operator, ϱ : I × I ×R → CB(R) is a continuous function such that
ϱ(t, s, 0) = 0.
The purpose of equation (4.3) is to study some asymptotic properties of solutions
of the perturbed equation. To ensure that the solutions of (4.2) and (4.3) are the
same, the condition imposed on (4.2) is also on (4.3).
Let Ch be a class of function spaces which is stronger than (C(I,R), d) and has the
property that

υ(t) ∈ Ch ⇐⇒
∫
I

ρ(t, s)υ(s)ds ∈ Ch whenever f(t) ∈ Ch.

This condition leads to the admissibility of the pair (Ch, Ch) with respect to the
Volterra equation (4.2). In order that the perturbed operator (4.4) acts from Ch to
Ch, it suffices to impose the following hypotheses:

I. The pair (Ch, Ch) is admissible with respect to (4.2);

II. For each υ(t) ∈ Ch, there corresponds ω(t) ∈ Tυ(t) such that Tυ(t) ∈ Ch for
t ∈ I.

III. There exist positive function ρ0 : I × I → R and ρ : I × I → R such that

|ϱ(t, s, υ(s))− ϱ(t, s, ω(s))| ≤ ρ0(t, s)(1− e−|υ(s)−ω(s)|/2)

and

|υ(s)− ν(s)| ≤ ρ(t, s) ln (1 + |υ(s)− ν(s)|/2), ∀ ν ∈ Tυ,

respectively.

IV. For all s, t ∈ I and L > 0, there give h1, h2 ∈ Ch such that∫
I

ρ0(t, s)h1(s)ds ≤
h1(t)

L
and

∫
I

ρ(t, s)h2(s)ds ≤
h2(t)

L
.

V. For υ(t) ∈ Ch, there exists R > 0 such that |υ(t)| ≤ Rh(t), for t ∈ I and
R = L−1.

VI. For f(t; υ(t)) ∈ Ch, there exists R∗ > 0 such that

|f(t; υ(t))| ≤ R∗h(t) + |f(t)| if f(t) ∈ Ch.

With respect to the above, result concerning the exponential decay of equation (4.3)
is presented as follow:
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Theorem 4.1. Suppose that all hypotheses (I-VI) are fulfilled with h1(t) = 1−e−κt

and h2(t) = ln (1 + κt) for κ > 0. Then, there exists a unique solution of equation
(4.3) belonging to Ch whenever R is small enough.

Proof. Let T : u(t) → υ(t) from Ch to Ch, where υ(t) is the solution of (4.3) and
u(t) is such that

u(t) ∈ f(t; υ(t)) +

∫
I

ρ(t, s)υ(s)ds

Let T : w(t) → ω(t) be such that

w(t) ∈ f(t;ω(t)) +

∫
I

ρ(t, s)ν(s)ds

where f(t;ω(t)) ∈ f(t)+
∫
I
ϱ(t, s, ω(s))ds is the perturbed operator associated with

ν(t) ∈ Tυ(t). Going by the conditions (I-IV), it follows that

|u(t)− w(t)| = sup
t∈I

∣∣∣∣f(t; υ(t))− f(t;ω(t)) +

∫
I

ρ(t, s)υ(s)ds−
∫
I

ρ(t, s)ν(s)ds

∣∣∣∣
≤ sup

t∈I

{
|f(t; υ(t))− f(t;ω(t))|+

∣∣∣∣∫
I

ρ(t, s)υ(s)ds−
∫
I

ρ(t, s)ν(s)ds

∣∣∣∣}
= sup

t∈I

{∣∣∣∣∫
I

(ϱ(t, s, υ(s))− ϱ(t, s, ω(s))) ds

∣∣∣∣+ ∣∣∣∣∫
I

ρ(t, s)(υ(s)− ν(s))ds

∣∣∣∣}
≤ sup

t∈I

{∫
I

|ϱ(t, s, υ(s))− ϱ(t, s, ω(s))| ds+
∫
I

ρ(t, s) |υ(s)− ν(s)| ds
}

≤ sup
t∈I

{∫
I

ρ0(t, s)(1− e−|υ(s)−ω(s)|/2)ds

+

∫
I

ρ(t, s) ln (1 + |υ(s)− ν(s)|/2)ds
}

≤ 1− e−|υ(t)−ω(t)|/2

L|υ(t)− ω(t)|
sup
t∈I

{|υ(t)− ω(t)|}

+
ln (1 + |υ(t)− ν(t)|/2)

L|υ(t)− ν(t)|
sup
t∈I

{|υ(t)− Tυ(t)|}

By replacing u = Tυ and w = Tω and letting ϑ(ti) = Rti for each ti ∈ R+, i ∈ {1, 2}
and R = 1

L . The last inequality is resulted to

d(Tυ,Tω) ≤ α(tn,1)ϑ(t1) + β(tn,2)ϑ(t2)

Clearly, α, β ∈ F∗ and ϑ ∈ Φ. Thus, the map T satisfies condition (2.6) and by the
application of Theorem 3.1., the perturbed equation (4.3) has a unique solution in
Ch. 2

Remark 4.2. Result concerning boundedness could be proved for the perturbed
equation (4.3) in Ch given that h(t) is a constant function. Other forms can be
sought in the literature herein.
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4.2. Application II

Here, consider the generalized hypergeometric function denoted and defined by

(4.5) mHn(γ1, γ2, . . . , γm; δ1, δ2, . . . , δn; y) =

∞∑
r=0

(γ1)r(γ2)r · · · (γm)ry
r

(δ1)r(δ2)r · · · (δn)rr!

where (γi)r and (δj)r, i = 1(1)m; j = 1(1)n are Pochhammer symbols with (γi)0 =
(δj)0 = 1 for each i, j. If m,n = 1, then (4.5) gives the confluent hypergeometric
function and the conventional hypergeometric function if m = 2 and n = 1. The
existence of a case of hypergeometric operators is presented as follow:

Practical Example 4.3. Let T : K → K be defined by an hypergeometric operator
Ty = y2H1(1, 1; 2; y), for all y ∈ K. Let K = [0, 1] be furnished with metric
d(y, z) = |y − z| and define ϑ(s) = 2

p0
s, for all s ∈ R+ and p0 > 2.

Also, let sn, tn := inf
{
d(y, ς) : d(y, ς) ≥ 1

n , for y, ς ∈ K;n ∈ N
}
.

Then, the hypergeometric operator T satisfies (2.6) with α, β ∈ F∗ and has a unique
fixed point in K.

Proof. Let y, z ∈ K with y > z. From (4.5) with the Pochhammer condition, there
results

Ty − Tz = y2H1(1, 1; 2; y)− z2H1(1, 1; 2; z)

= y

∞∑
r=0

(1)k(1)ry
r

(2)rr!
− z

∞∑
r=0

(1)r(1)rz
r

(2)rr!

=

∞∑
r=0

(1)r(1)r
(
yr+1 − zr+1

)
(2)rr!

= y − z − (y2 − z2)

2
+

(y3 − z3)

3
− (y4 − z4)

4
+

(y5 − z5)

5
+ · · ·

For y > z, then yp − zp ≥ (y − z)p ≥ (y − z)p+1 and

(y − z)p+1

p+ 1
− (y − z)p

p
≥ (yp+1 − zp+1)

p+ 1
− (yp − zp)

p
.

hold for p > 1. Then,

Ty − Tz ≤ y − z − (y − z)2

2
+

(y − z)3

3
− (y − z)4

4
+

(y − z)5

5
+ · · ·

= y − z − (y − z)2 +
(y − z)2

2
+

(y − z)3

3
+ · · ·

−
[
(y − z)4

2
+

(y − z)6

3
+

(y − z)8

4
+ · · ·

]
=

∞∑
r=1

(y − z)r

r
−

∞∑
r=1

(y − z)2r

r
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Since y − z > 0, then
Ty − Tz ≤ y − z − (y − z)2

On other hand, if y < z, then

Ty − Tz ≤
∞∑
r=2

(y − z)r

r
−

∞∑
r=2

(y − z)2r

r

≤
∞∑
r=2

(y − z)r

r
−

∞∑
r=2

(y − z)r
∞∑
r=2

(y − z)r

r

=

(
1−

∞∑
r=2

(y − z)r

) ∞∑
r=2

(y − z)r

r

Observe that the similitude of the latter is in manifolds. Let p0 > 2 be a positive
integer and |y − z| ≤ y, then there results

d(Ty,Tz) ≤ (1− |y − z|)
p0

|y − z|+ 1

p0

(
1−

∞∑
r=2

yr

r

)∣∣∣∣∣
∞∑
r=1

yr

r
− y

∣∣∣∣∣
≡
(
1− d(y, z)

2

)
ϑ (d(y, z)) +

(
1− d(Ty, y)

2

)
ϑ (d(Ty, y))

where Ty = y2H1(1, 1; 2; y) and ϑ(s) =
2
p0
s. By letting α(s) = 1−s

2 and β(t) = 1−t
2 ,

then α, β ∈ F∗ since α(sn), β(tn) → 1
2 as sn, tn → 0. By the hypothesis of Theorem

3.1., the sequence yn+1 = yn2H1(1, 1; 2; yn) converges to the fixed point 0 for any
initial seed y0 ∈ K. 2

The estimates ξn,1, ξn,2 and ξn,3 (see Theorem 3.8. and Remark 3.9.) when x0 = 1
6 ,

p0 ∈ N and few generations are presented in Table 1. It is seen in Table 1 that the
ϑ-quasi-Geraghty map has better convergent rate.

5. Concluding Remarks

This study discussed the existence properties, stability and convergent rate
of the operator satisfying one of the 3C2 cases of ϑ-quasi-Geraghty contractive
maps. The contractive condition is weaker than previous conditions and efficacies
are quantified in Theorem 3.8, 3.10 and shown on Table 1. But without prejudice
on results concerning other forms in inequality (2.2), that is, the cases {t1; tp0} and
{t2; tp0} given by

d(Tx,Ty) ≤ α1(tn,1)ϑ(t1) + α2(t2,p0)ϑ(tp0)

and
d(Tx,Ty) ≤ α2(tn,2)ϑ(t2) + αp0

(tn,p0)ϑ(tp0)

respectively, will be investigated in future studies.
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Table 1: Estimates for Practical Example 4.3.

Estimates

ϑ-quasi-Geraghty map ϑ-Geraghty map Geraghty map

n α ∈ F∗ ξn,1 α ∈ F ξn,2 α ∈ F ξn,3

1 0.4166667 0.2777778 0.8333333 0.4166667 0.8333333 0.8333333

5 0.4500000 0.0024300 0.900000 0.0184528 0.900000 0.5904900

10 0.4666667 8.495× 10−6 0.9333333 0.00048986 0.9333333 0.5016118

20 0.4800000 1.268× 10−10 0.960000 4.215× 10−7 0.9600000 0.4420024

50 0.4909091 5.565× 10−25 0.9818182 3.549× 10−16 0.9818182 0.3995338

100 0.4952381 7.452× 10−49 0.9904762 3.030× 10−31 0.9904762 0.3840644

1000 0.4995025 0 0.999005 3.449× 10−302 0.9990050 0.3695311
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