DOI QR코드

DOI QR Code

A Study on Design Method of Blast Hardened Bulkhead Considering the Response of Shock Impulse

충격량에 대한 응답을 고려한 폭발강화격벽 설계 방법 연구

  • Myojung Kwak (R&D Institute, Daewoo Shipbuilding and Marine Engineering Co., Ltd.) ;
  • Joonyoung Yoon (R&D Institute, Daewoo Shipbuilding and Marine Engineering Co., Ltd.) ;
  • Seungmin Kwon (R&D Institute, Daewoo Shipbuilding and Marine Engineering Co., Ltd.) ;
  • Yoojeong Noh (School of Mechanical Engineering, Pusan National University)
  • 곽묘정 (대우조선해양(주) 중앙연구원) ;
  • 윤준영 (대우조선해양(주) 중앙연구원) ;
  • 권승민 (대우조선해양(주) 중앙연구원) ;
  • 노유정 (부산대학교 기계공학과)
  • Received : 2022.08.11
  • Accepted : 2022.12.02
  • Published : 2023.02.20

Abstract

Blast Hardened Bulkhead (BHB) is an important measure that can increase the ship's survivability as well as protect the lives of the crew by mitigating the damage extent caused by an internal explosion in the ship. In particular, both the pressure and the shock impulse should be considered when designing the BHB against reflected shock waves having a high pressure with a short duration. This study proposes a design method for BHB that considers both the pressure and the shock impulse generated during the internal explosion. In addition, analysis and design concepts for accident loads such as explosion, fire, and collision of NORSOK and DNVGL, one of the international design guidelines for the curtain plate type blast hardened bulkhead type applied by the Korean Navy, are utilized. If this method is applied, it is expected that it can be used as a design concept for the pressure as well as the shock impulse of the explosion load of the curtain plate.

Keywords

Acknowledgement

본 과제는 대우조선해양과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구 (No. 2020R1A5A8018822)이며, 연구비 지원에 감사드립니다.

References

  1. Al-Thairy, H., 2017. Single degree of freedom analysis method for steel Beams under blast pressure using nonlinear resistance function with strain rate effects, Journal of Babylon University/Engineering Sciences, 24(3), pp.298-313.
  2. Amdahl, J., 2003. Revised NORSOK standard N-004 on accidental explosion. [Online] Available at https://www.usfos.com/publications/explosion/documents/2003-DesignOrientedMethodsAccidentalExplosions.pdf [Accessed 1 August 2022].
  3. Amdahl, J., 2004. Resistance to accidental and very extreme explosion. [Online] Available at https://www.usfos.com/publications/explosion/documents/2004-ResistanceAccidental&ExtremeExplosions.pdf [Accessed 1 August 2022].
  4. Baker, W.E., Cox, P.A., Kulesz, J.J., Strehlow, R.A. and Westine, P.S., 1983. Explosion hazards and evaluation. Elsevier Scientific Pub: Amsterdam(New York).
  5. Brefort, D., S. Colin, A.H. Jansen, E. Duchateu, Pawling, R. et al., 2018. An architectural framework for distributed naval ship systems. Ocean Engineering, 147, pp.375-385. https://doi.org/10.1016/j.oceaneng.2017.10.028
  6. DNVGL, 2019. Structural design against accidental loads, recommended practice, DNVGL-RP-C204.
  7. Habben Jensen, A.C. Kana, A.A. and Hopman, J.J., 2019. Markov-based vulnerability assessment for the design of on-board distributed systems in the concept phase. Ocean Engineering, 190, pp.106448.
  8. Idriss, J., Fritz, J. and Schmidt, J., 2016. Dynamic analysis of insulated metal panels for blast effects, Structures Magazines, pp.12-15.
  9. Kim, S.H., 2015, Development of blast hardened bulkheads with attached aluminum foam, Master. KAIST. 
  10. Kim S.J., Son, J.M., Lee, J.C., Li, C.B., Seong, D.J. and Paik, J.K., 2014. Dynamic structural response characteristics of stiffened blast wall under explosion load, Journal of the Society of Naval Architects of Korea, 51(5), pp.380-387. https://doi.org/10.3744/SNAK.2014.51.5.380
  11. Kim, U.N. and Ha, S.S., 2020. A review on practical use of simple analysis method based on SDOF model for the stiffened plate structures subjected to blast loads. Journal of the Society of Naval Architects of Korea, 57(2), pp.70-79. https://doi.org/10.3744/SNAK.2020.57.2.070
  12. Kim, Y.Y., Choi, G.G., Na, Y.S. and Han, S.H., 2015. Development of design and validation technology for blast hardened bulkheads, Proceedings of Advances in Structural Engineering and Mechanics (ASEM15), Incheon, Korea, August 25-29.
  13. Lee, S.G., Lee, H.S., Lee, J.S., Kim, Y.Y. and Choi, G.G., 2017. Shock response analysis of blast hardened bulkhead in partial chamber model under internal blast, Proceedings of the 11th International Symposium on Plasticity and Impact Mechanics (Procedia Engineering), 173, pp.511-518.
  14. MSC Nastran, 2020. Nonlinear User's Guide.
  15. Nho, I.S., Park, M.J. and Cho, Y.S., 2018a. Preliminary structural design of blast hardened bulkhead (The 1st report : formulation of simplified structural analysis/design method). Journal of the Society of Naval Architects of Korea, 55(5), pp.371-378. https://doi.org/10.3744/SNAK.2018.55.5.371
  16. Nho, I.S., Park, M.J. and Cho, Y.S., 2018b, Preliminary structural design of blast hardened bulkhead (The 2nd report: scantling formula for curtain plate type blast hardened bulkhead), 55(5), pp.379-384. https://doi.org/10.3744/SNAK.2018.55.5.379
  17. NORSOK Standard, 2004. Design of steel structures, Rev.2, Standard N-004, Norway Lysaker: Standards Norway.
  18. Republic of Korean Navy, 2019, Guideline for Design of Blast Hardened Bulkhead.
  19. Shin, H.S., Kim, S., Moon, J., Kim, W. and Hong, W., 2020. Failure behavior analysis of single-leaf blast-resistant door by explosion loads, J. Korean Soc. Hazard Mitig. 20(4), pp.195-206. https://doi.org/10.9798/KOSHAM.2020.20.4.195
  20. Sohn, J.M. and Kim, S.J. 2017. Numerical investigation of structural response of corrugated blast wall depending on blast load pulse shape. Latin American Journal of Solid and Structures, 14(9), pp.1710-1722. https://doi.org/10.1590/1679-78254060
  21. Stark, S. and Sajdak, J., 2012. Design and effectiveness criteria for blast hardened bulkhead applications on naval combatants, Proceedings of the 4th International Conference on Design and Analysis of Protective Structures, Jeju, Korea.
  22. Stark, S.A., 2016. Definition of damage volumes for the rapid prediction of ship vulnerability to AIREX weapon effects. Master, Virginia Tech.
  23. Stolz, A., Millon, O. and Klomfass, A., 2016. Analysis of the resistance of structural components to explosive loading by shock-tube tests and SDOF models, Chemical Engineering Transactions, 48, pp.151-156.
  24. U.S. Army corps of engineers, 2008. Structures to resist the effects of accidental explosions.
  25. Tsai, Y. and Krauthammer, T., 2017. Energy based load-impulse diagrams. Engineering Structures. 149, pp.64-77. https://doi.org/10.1016/j.engstruct.2016.10.042