DOI QR코드

DOI QR Code

기하학적 보존을 만족하는 최소제곱법을 활용한 무격자 구조해석 기법 개발

Development of Meshless Method Using Least-Squares Method with Geometric Conservation Law for Structural Dynamic Analysis

  • 이상우 (서울대학교 항공우주공학과) ;
  • 허진영 (국방과학연구소) ;
  • 김규홍 (서울대학교 항공우주공학과/항공우주신기술연구소)
  • Sang Woo Lee (Aerospace Engineering, Seoul National University) ;
  • Jin Young Huh (Agency for Defense Development) ;
  • Kyu Hong Kim (Aerospace Engineering, Seoul National University/Institution of Advanced Aerospace Technology)
  • 투고 : 2023.01.17
  • 심사 : 2023.02.06
  • 발행 : 2023.02.28

초록

A meshless technique using the geometric conservation least-squares method (GC-LSM) was devised to discretize the governing equation of linear elasticity. Although the finite-element method is widely used for structural analysis, a meshless method was developed because of its advantages in a moving grid system. This work is the preliminary phase for developing a fully meshless-based fluid-structure interaction solver. In this study, Cauchy's momentum equation was discretized in strong form using GC-LSM for the structural domain, and the Newmark beta method was used for time integration. The solver was validated in 1D, 2D, and 3D benchmarking problems. Static and dynamic results were obtained. The results are more accurate than those of analytic solutions.

키워드

과제정보

본 연구는 국토교통부의 재원으로 국토교통과학기술진흥원 철도기술연구사업(22RTRP-B146018-05)의 지원으로 작성되었습니다

참고문헌

  1. Dolbow, J., Belytschko, T. (1998) An Introduction to Programming the Meshless Element Free Galerkin Method, Arch. Comput. Methods Eng., 5, pp.27~241.
  2. Gordnier, R.E., Visbal, M.R. (2004) Computation of the Aeroelastic Response of a Flexible Delta Wing at High Angles of Attack, J. Fluids & Struct., 19, pp.785~800. https://doi.org/10.1016/j.jfluidstructs.2004.04.008
  3. Huh, J.Y, Rhee, J.S., Kim, K.H., Jung, S.Y. (2018) New Least Squares Method with Geometric Conservation Law (GC-LSM) for Compressible Flow Computation in Meshless Method, Comput. & Fluids, 172, pp.122~146. https://doi.org/10.1016/j.compfluid.2018.06.010
  4. Intel, M.K.L. (2020) Intel Math Kernel Library, Developer Reference.
  5. Katz, A., Jameson, A. (2009) A Comparison of Various Meshless Schemes Within a Unified Algorithm, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida.
  6. Mase, G.T., Smelser, R.E., Mase, G.E. (1999) Continuum Mechanics for Engineers, CRC press, p.398.
  7. Mavriplis, D. J. (2003) Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes, AIAA 16th Computational Fluid Dynamics Conference, Orlando, FL, AIAA, pp.2003~3986.
  8. Newmark, N.M. (1959) A Method of Computation for Dynamic, J. Eng. Mech. Div., 85(3), pp.67~94. https://doi.org/10.1061/JMCEA3.0000098
  9. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M. (2008) Meshless Methods: A Rreview and Computer Implementation Aspects, Math & Comput. Simul., 79, pp.763~813. https://doi.org/10.1016/j.matcom.2008.01.003
  10. Slotnick, J.P., Khodadodoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D. J. (2014) CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, No. NF1676L-18332, NASA Technical Report, p.20.
  11. Timoshenko, S.P., Goodier, J.N. (1970) Theory of Elasticity (Third ed.), New York, 23, McGraw Hill.
  12. Xia, G.H., Zhao, Y ., Y eo, J.H., Lv, X. (2007) A 3D Implicit Unstructured-Grid finite Volume Method for Structural Dynamics, Comput. Mech., 40, pp.299~312. https://doi.org/10.1007/s00466-006-0100-7