DOI QR코드

DOI QR Code

The role of tRNA-derived small RNAs in aging

  • Seokjun G. Ha (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Seung-Jae V. Lee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2022.11.17
  • Accepted : 2023.01.17
  • Published : 2023.02.28

Abstract

Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases.

Keywords

Acknowledgement

We thank all Lee lab members for comments and discussion. This research was supported by the KAIST Key Research Institutes Project (Interdisciplinary Research Group) to S.J.V.L.

References

  1. Schumacher B, Pothof J, Vijg J and Hoeijmakers JHJ (2021) The central role of DNA damage in the ageing process. Nature 592, 695-703 https://doi.org/10.1038/s41586-021-03307-7
  2. Steffen KK and Dillin A (2016) A ribosomal perspective on proteostasis and aging. Cell Metab 23, 1004-1012 https://doi.org/10.1016/j.cmet.2016.05.013
  3. Seo M, Seo K, Hwang W et al (2015) RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 112, E4246-4255 https://doi.org/10.1073/pnas.1505451112
  4. Seo M, Park S, Nam HG and Lee SJ (2016) RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans. Cell Cycle 15, 1821-1829 https://doi.org/10.1080/15384101.2016.1183845
  5. Heintz C, Doktor TK, Lanjuin A et al (2017) Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 541, 102-106 https://doi.org/10.1038/nature20789
  6. Son HG, Seo M, Ham S et al (2017) RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nat Commun 8, 14749
  7. Son HG and Lee SJ (2017) Longevity regulation by NMDmediated mRNA quality control. BMB Rep 50, 160-161 https://doi.org/10.5483/BMBRep.2017.50.4.045
  8. Kim EJE, Son HG, Park HH, Jung Y, Kwon S and Lee SV (2020) Caenorhabditis elegans algn-2 is critical for longevity conferred by enhanced nonsense-mediated mRNA decay. iScience 23, 101713
  9. Kim SS and Lee SV (2019) Non-coding RNAs in Caenorhabditis elegans aging. Mol Cells 42, 379-385
  10. Ham S and Lee SJV (2020) Advances in transcriptome analysis of human brain aging. Exp Mol Med 52, 1787-1797 https://doi.org/10.1038/s12276-020-00522-6
  11. Kim E, Kim YK and Lee SV (2021) Emerging functions of circular RNA in aging. Trends Genet 37, 819-829 https://doi.org/10.1016/j.tig.2021.04.014
  12. He J, Tu C and Liu Y (2018) Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 1, 158-175 https://doi.org/10.1002/agm2.12030
  13. Kim HK, Yeom JH and Kay MA (2020) Transfer RNAderived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther 28, 2340-2357 https://doi.org/10.1016/j.ymthe.2020.09.013
  14. Lee SR and Collins K (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280, 42744-42749 https://doi.org/10.1074/jbc.M510356200
  15. Thompson DM, Lu C, Green PJ and Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095-2103 https://doi.org/10.1261/rna.1232808
  16. Yamasaki S, Ivanov P, Hu GF and Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185, 35-42 https://doi.org/10.1083/jcb.200811106
  17. Thompson DM and Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43-50 https://doi.org/10.1083/jcb.200811119
  18. Lee YS, Shibata Y, Malhotra A and Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23, 2639-2649 https://doi.org/10.1101/gad.1837609
  19. Cole C, Sobala A, Lu C et al (2009) Filtering of deep sequencing data reveals the existence of abundant dicerdependent small RNAs derived from tRNAs. RNA 15, 2147-2160 https://doi.org/10.1261/rna.1738409
  20. Kumar P, Anaya J, Mudunuri SB and Dutta A (2014) Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC biology 12, 1-14 https://doi.org/10.1186/1741-7007-12-1
  21. Li Z, Ender C, Meister G, Moore PS, Chang Y and John B (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40, 6787-6799 https://doi.org/10.1093/nar/gks307
  22. Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L and Tavazoie SF (2015) Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790-802 https://doi.org/10.1016/j.cell.2015.02.053
  23. Telonis AG, Loher P, Honda S et al (2015) Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 6, 24797-24822 https://doi.org/10.18632/oncotarget.4695
  24. Hanada T, Weitzer S, Mair B et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495, 474-480 https://doi.org/10.1038/nature11923
  25. Lee YS (2022) Are we studying non-coding RNAs correctly? Lessons from nc886. Int J Mol Sci 23, 4251
  26. Kato M, Chen X, Inukai S, Zhao H and Slack FJ (2011) Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17, 1804-1820 https://doi.org/10.1261/rna.2714411
  27. Shin G, Koo HJ, Seo M, Lee SV, Nam HG and Jung GY (2021) Transfer RNA-derived fragments in aging Caenorhabditis elegans originate from abundant homologous gene copies. Sci Rep 11, 12304
  28. Karaiskos S, Naqvi AS, Swanson KE and Grigoriev A (2015) Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biol Direct 10, 51
  29. Karaiskos S and Grigoriev A (2016) Dynamics of tRNA fragments and their targets in aging mammalian brain. F1000Res 5, 2758
  30. Zhang S, Li H, Zheng L, Li H, Feng C and Zhang W (2019) Identification of functional tRNA-derived fragments in senescence-accelerated mouse prone 8 brain. Aging (Albany NY) 11, 10485-10498 https://doi.org/10.18632/aging.102471
  31. Lu Z, Su K, Wang X et al (2021) Expression profiles of tRNA-derived small RNAs and their potential roles in primary nasopharyngeal carcinoma. Front Mol Biosci 8, 780621
  32. Chen Z, Qi M, Shen B et al (2019) Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 47, 2533-2545 https://doi.org/10.1093/nar/gky1250
  33. Cui H, Li H, Wu H et al (2022) A novel 3'tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis 13, 471
  34. Liu X, Mei W, Padmanaban V et al (2022) A pro-metastatic tRNA fragment drives Nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol Cell 82, 2604-2617 e8
  35. Deng H, Wang J, Ye D et al (2022) A 5'-tiRNA fragment that inhibits proliferation and migration of laryngeal squamous cell carcinoma by targeting PIK3CD. Genomics 114, 110392
  36. Schaffer AE, Eggens VR, Caglayan AO et al (2014) CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157, 651-663 https://doi.org/10.1016/j.cell.2014.03.049
  37. Karaca E, Weitzer S, Pehlivan D et al (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157, 636-650 https://doi.org/10.1016/j.cell.2014.02.058
  38. Li S, Chen Y, Sun D et al (2018) Angiogenin prevents progranulin A9D mutation-induced neuronal-like cell apoptosis through cleaving tRNAs into tiRNAs. Mol Neurobiol 55, 1338-1351 https://doi.org/10.1007/s12035-017-0396-7
  39. Cao Y, Liu K, Xiong Y, Zhao C and Liu L (2021) Increased expression of fragmented tRNA promoted neuronal necrosis. Cell Death Dis 12, 823
  40. Zhang X, Trebak F, Souza LAC et al (2020) Small RNA modifications in Alzheimer's disease. Neurobiol Dis 145, 105058
  41. Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN and Dmitriev SE (2018) Protein synthesis and quality control in aging. Aging (Albany NY) 10, 4269-4288 https://doi.org/10.18632/aging.101721
  42. Stout GJ, Stigter EC, Essers PB et al (2013) Insulin/IGF1-mediated longevity is marked by reduced protein metabolism. Mol Syst Biol 9, 679
  43. Johnson SC, Rabinovitch PS and Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493, 338-345 https://doi.org/10.1038/nature11861
  44. Ivanov P, Emara MM, Villen J, Gygi SP and Anderson P (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43, 613-623 https://doi.org/10.1016/j.molcel.2011.06.022
  45. Guzzi N, Ciesla M, Ngoc PCT et al (2018) Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204-1216 e1226
  46. Kim HK, Fuchs G, Wang S et al (2017) A transfer-RNAderived small RNA regulates ribosome biogenesis. Nature 552, 57-62 https://doi.org/10.1038/nature25005
  47. Kim HK, Xu J, Chu K et al (2019) A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice. Cell Rep 29, 3816-3824 e4
  48. Di Fazio A, Schlackow M, Pong SK, Alagia A and Gullerova M (2022) Dicer dependent tRNA derived small RNAs promote nascent RNA silencing. Nucleic Acids Res 50, 1734-1752 https://doi.org/10.1093/nar/gkac022
  49. Wang Q, Li T, Xu K et al (2016) The tRNA-derived small RNAs regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen Phytophthora sojae. Front Plant Sci 7, 1938
  50. Maute RL, Schneider C, Sumazin P et al (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A 110, 1404-1409 https://doi.org/10.1073/pnas.1206761110
  51. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ and Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673-695 https://doi.org/10.1261/rna.2000810
  52. Filer D, Thompson MA, Takhaveev V et al (2017) RNA polymerase III limits longevity downstream of TORC1. Nature 552, 263-267 https://doi.org/10.1038/nature25007
  53. Maraia RJ and Lamichhane TN (2011) 3' processing of eukaryotic precursor tRNAs. Wiley Interdiscip Rev RNA 2, 362-375 https://doi.org/10.1002/wrna.64
  54. Siira SJ, Rossetti G, Richman TR et al (2018) Concerted regulation of mitochondrial and nuclear non-coding RNAs by a dual-targeted RNase Z. EMBO Rep 19, e46198
  55. Choi EJ, Wu W, Zhang K et al (2020) ELAC2, an enzyme for tRNA maturation, plays a role in the cleavage of a mature tRNA to produce a tRNA-derived RNA fragment during respiratory syncytial virus infection. Front Mol Biosci 7, 609732
  56. Held JP, Feng G, Saunders BR, Pereira CV, Burkewitz K and Patel MR (2022) A tRNA processing enzyme is a key regulator of the mitochondrial unfolded protein response. Elife 11, e71634
  57. Hwang AB and Lee SJ (2011) Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3, 304-310 https://doi.org/10.18632/aging.100292
  58. Hwang AB, Jeong DE and Lee SJ (2012) Mitochondria and organismal longevity. Current Genomics 13, 519-532 https://doi.org/10.2174/138920212803251427
  59. Peng H, Shi J, Zhang Y et al (2012) A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22, 1609-1612 https://doi.org/10.1038/cr.2012.141
  60. Chen Q, Yan M, Cao Z et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397-400 https://doi.org/10.1126/science.aad7977
  61. Sharma U, Conine CC, Shea JM et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391-396 https://doi.org/10.1126/science.aad6780
  62. Zhang Y, Ren L, Sun X et al (2021) Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs. Nat Commun 12, 6673
  63. Salvestrini V, Sell C and Lorenzini A (2019) Obesity may accelerate the aging process. Front Endocrinol (Lausanne) 10, 266
  64. Bonomini F, Rodella LF and Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6, 109-120 https://doi.org/10.14336/AD.2014.0305
  65. Childs BG, Baker DJ, Kirkland JL, Campisi J and van Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15, 1139-1153 https://doi.org/10.15252/embr.201439245
  66. Saikia M, Jobava R, Parisien M et al (2014) Angiogenincleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 34, 2450-2463
  67. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19, 199
  68. De Cecco M, Ito T, Petrashen AP et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73-78 https://doi.org/10.1038/s41586-018-0784-9
  69. Schorn AJ, Gutbrod MJ, LeBlanc C and Martienssen R (2017) LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61-71 e11
  70. Winkle M, El-Daly SM, Fabbri M and Calin GA (2021) Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 20, 629-651 https://doi.org/10.1038/s41573-021-00219-z
  71. Rupaimoole R and Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16, 203-222 https://doi.org/10.1038/nrd.2016.246
  72. Zhang Y, Zhang Y, Shi J et al (2014) Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J Mol Cell Biol 6, 172-174 https://doi.org/10.1093/jmcb/mjt052