DOI QR코드

DOI QR Code

PROM1-mediated cell signal transduction in cancer stem cells and hepatocytes

  • 투고 : 2022.11.16
  • 심사 : 2023.01.03
  • 발행 : 2023.02.28

초록

Prominin-1 (PROM1), also called CD133, is a penta-span transmembrane protein that is localized in membrane protrusions, such as microvilli and filopodia. It is known to be expressed in cancer stem cells and various progenitor cells of bone marrow, liver, kidney, and intestine. Accumulating evidence has revealed that PROM1 has multiple functions in various organs, such as eye, tooth, peripheral nerve, and liver, associating with various molecular protein partners. PROM1 regulates PKA-induced gluconeogenesis, TGFβ-induced fibrosis, and IL-6-induced regeneration in the liver, associating with Radixin, SMAD7, and GP130, respectively. In addition, PROM1 is necessary to maintain cancer stem cell properties by activating PI3K and β-Catenin. PROM1-deficienct mice also show distinct phenotypes in eyes, brain, peripheral nerves, and tooth. Here, we discuss recent findings of PROM1-mediated signal transduction.

키워드

과제정보

We thank all members of our laboratory for their supports and intellectual inputs during the preparation of this manuscript. Funding: This work was supported by grants from the National Research Foundation of Korea awarded to; Y.-G. Ko (R1A5A1009024 and R1A2C1011601).

참고문헌

  1. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5, 67 
  2. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760  https://doi.org/10.1038/nature05236
  3. Florek M, Haase M, Marzesco AM et al (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319, 15-26  https://doi.org/10.1007/s00441-004-1018-z
  4. Yin S, Li J, Hu C et al (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120, 1444-1450  https://doi.org/10.1002/ijc.22476
  5. Weigmann A, Corbeil D, Hellwig A and Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 94, 12425-12430  https://doi.org/10.1073/pnas.94.23.12425
  6. Miraglia S, Godfrey W, Yin AH et al (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013-5021  https://doi.org/10.1182/blood.V90.12.5013
  7. Roper K, Corbeil D and Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2, 582-592  https://doi.org/10.1038/35023524
  8. Corbeil D, Roper K, Hannah MJ, Hellwig A and Huttner WB (1999) Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells - a combination of apical sorting and retention in plasma membrane protrusions. J Cell Sci 112, 1023-1033  https://doi.org/10.1242/jcs.112.7.1023
  9. Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002-5012  https://doi.org/10.1182/blood.V90.12.5002
  10. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432, 396-401  https://doi.org/10.1038/nature03128
  11. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115  https://doi.org/10.1038/nature05384
  12. Lee H, Yu DM, Park JS et al (2020) Prominin-1-Radixin axis controls hepatic gluconeogenesis by regulating PKA activity. EMBO Rep 21, e49416 
  13. Lee H, Yu DM, Bahn MS et al (2022) Hepatocyte-specific Prominin-1 protects against liver injury-induced fibrosis by stabilizing SMAD7. Exp Mol Med 54, 1277-1289  https://doi.org/10.1038/s12276-022-00831-y
  14. Bahn MS, Yu DM, Lee M et al (2022) Central role of Prominin-1 in lipid rafts during liver regeneration. Nat Commun 13, 6219 
  15. Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603-607  https://doi.org/10.1038/nature07589
  16. Lee J, Shin JE, Lee B et al (2020) The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proc Natl Acad Sci U S A 117, 15955-15966  https://doi.org/10.1073/pnas.1920829117
  17. Zacchigna S, Oh H, Wilsch-Brauninger M et al (2009) Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29, 2297-2308  https://doi.org/10.1523/JNEUROSCI.2034-08.2009
  18. Choi MH, Na JE, Yoon YR, Rhyu IJ, Ko YG and Baik JH (2018) Hypomyelination and cognitive impairment in mice lacking CD133 (Prominin-1). Biochem Biophys Res Commun 502, 291-298  https://doi.org/10.1016/j.bbrc.2018.05.072
  19. Singer D, Thamm K, Zhuang H et al (2019) Prominin-1 controls stem cell activation by orchestrating ciliary dynamics. EMBO J 38, e99845 
  20. Yu Y, Flint A, Dvorin EL and Bischoff J (2002) AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem 277, 20711-20716  https://doi.org/10.1074/jbc.M202349200
  21. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115, 377-388  https://doi.org/10.1016/S0092-8674(03)00882-1
  22. Simons K and Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-39  https://doi.org/10.1038/35036052
  23. Thomas S, Preda-Pais A, Casares S and Brumeanu TD (2004) Analysis of lipid rafts in T cells. Mol Immunol 41, 399-409  https://doi.org/10.1016/j.molimm.2004.03.022
  24. Thomas S, Kumar RS and Brumeanu TD (2004) Role of lipid rafts in T cells. Arch Immunol Ther Exp (Warsz) 52, 215-224 
  25. Korade Z and Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55, 1265-1273  https://doi.org/10.1016/j.neuropharm.2008.02.019
  26. Marzesco AM, Janich P, Wilsch-Brauninger M et al (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118, 2849-2858  https://doi.org/10.1242/jcs.02439
  27. Chao OS, Chang TC, Di Bella MA et al (2017) The HDAC6 inhibitor tubacin induces release of CD133+ extracellular vesicles from cancer cells. J Cell Biochem 118, 4414-4424  https://doi.org/10.1002/jcb.26095
  28. Kang M, Kim S and Ko J (2019) Roles of CD133 in microvesicle formation and oncoprotein trafficking in colon cancer. FASEB J 33, 4248-4260  https://doi.org/10.1096/fj.201802018R
  29. Reichert D, Scheinpflug J, Karbanova J, Freund D, Bornhauser M and Corbeil D (2016) Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 44, 1092-1112 e2 
  30. Gerdes HH, Rustom A and Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 130, 381-387  https://doi.org/10.1016/j.mod.2012.11.006
  31. Pinto G, Brou C and Zurzolo C (2020) Tunneling nanotubes: the fuel of tumor progression? Trends Cancer 6, 874-888  https://doi.org/10.1016/j.trecan.2020.04.012
  32. Han X and Wang X (2021) Opportunities and challenges in tunneling nanotubes research: how far from clinical application? Int J Mol Sci 22, 2306 
  33. Zhu C, Shi Y and You J (2021) Immune cell connection by tunneling nanotubes: the impact of intercellular cross-talk on the immune response and its therapeutic applications. Mol Pharm 18, 772-786  https://doi.org/10.1021/acs.molpharmaceut.0c01248
  34. Dubreuil V, Marzesco AM, Corbeil D, Huttner WB and Wilsch-Brauninger M (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176, 483-495  https://doi.org/10.1083/jcb.200608137
  35. Yang Z, Chen Y, Lillo C et al (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118, 2908-2916  https://doi.org/10.1172/JCI35891
  36. Yang L, Shi P, Zhao G et al (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5, 8 
  37. Mak AB, Nixon AM, Kittanakom S et al (2012) Regulation of CD133 by HDAC6 promotes beta-catenin signaling to suppress cancer cell differentiation. Cell Rep 2, 951-963  https://doi.org/10.1016/j.celrep.2012.09.016
  38. Soeda A, Park M, Lee D et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28, 3949-3959  https://doi.org/10.1038/onc.2009.252
  39. Won C, Kim BH, Yi EH et al (2015) Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 62, 1160-1173  https://doi.org/10.1002/hep.27968
  40. Liu K, Jiang L, Shi Y et al (2022) Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ 29, 1834-1849  https://doi.org/10.1038/s41418-022-00969-2
  41. Wei Y, Jiang Y, Zou F et al (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 110, 6829-6834  https://doi.org/10.1073/pnas.1217002110
  42. Zhou L, Yu KH, Wong TL et al (2022) Lineage tracing and single-cell analysis reveal proliferative Prom1+ tumour-propagating cells and their dynamic cellular transition during liver cancer progression. Gut 71, 1656-1668  https://doi.org/10.1136/gutjnl-2021-324321
  43. Gurudev N, Yuan M and Knust E (2014) chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 3, 332-341  https://doi.org/10.1242/bio.20147310
  44. Ryu TH, Yeom E, Subramanian M, Lee KS and Yu K (2019) Prominin-like regulates longevity and glucose metabolism via insulin signaling in drosophila. J Gerontol A Biol Sci Med Sci 74, 1557-1563  https://doi.org/10.1093/gerona/gly291
  45. Ryu TH, Subramanian M, Yeom E and Yu K (2022) The prominin-like gene expressed in a subset of dopaminergic neurons regulates locomotion in drosophila. Mol Cells 45, 640-648  https://doi.org/10.14348/molcells.2022.0006
  46. Hurbain I, Mace AS, Romao M et al (2022) Microvilliderived extracellular vesicles carry Hedgehog morphogenic signals for Drosophila wing imaginal disc development. Curr Biol 32, 361-373 e6 
  47. Ingham PW and McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15, 3059-3087  https://doi.org/10.1101/gad.938601
  48. Trefts E, Gannon M and Wasserman DH (2017) The liver. Curr Biol 27, R1147-R1151  https://doi.org/10.1016/j.cub.2017.09.019
  49. Bale SS, Geerts S, Jindal R and Yarmush ML (2016) Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep 6, 25329 
  50. Passman AM, Strauss RP, McSpadden SB et al (2021) Maraviroc prevents HCC development by suppressing macrophages and the liver progenitor cell response in a murine chronic liver disease model. Cancers (Basel) 13, 4935 
  51. Zagory JA, Fenlon M, Dietz W et al (2019) Prominin-1 promotes biliary fibrosis associated with biliary atresia. Hepatology 69, 2586-2597 https://doi.org/10.1002/hep.30550