DOI QR코드

DOI QR Code

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture

시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석

  • Hye-Jin Yu (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Young-Jun Lee (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Sung-Kwan Seo (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Yong-Sik Chu (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Woo-Sung Yum (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center)
  • 유혜진 (한국세라믹기술원 탄소중립소재센터) ;
  • 이영준 (한국세라믹기술원 탄소중립소재센터) ;
  • 서성관 (한국세라믹기술원 탄소중립소재센터) ;
  • 추용식 (한국세라믹기술원 탄소중립소재센터) ;
  • 염우성 (한국세라믹기술원 탄소중립소재센터)
  • Received : 2023.03.17
  • Accepted : 2023.04.07
  • Published : 2023.04.30

Abstract

In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.

본 연구에서는 탈황석고(DG)에 이산화탄소를 반응시켜 만든 탄산화물(CCMs)의 시멘트 혼합재로서 적용 가능성 분석을 위해 탈황석고와 탄산화물의 미세구조 및 기초물성 분석을 실시하였다. 탈황석고의 경우 CaO 및 CaSO4가, 탄산화물의 경우 CaSO4, CaCO3, Ca(OH)2 및 CaSO4·H2O 결정상이 주 결정상으로 나타났으며 입도분석 결과 두 재료의 평균 입자 크기의 차이는 약 7 ㎛로 나타났다. 또한 탄산화물은 폐기물공정시험기준에 따른 중금속 용출시험 결과 주요 중금속이 불검출되었으며 열중량 분석 결과 탈황석고에 비해 CO2 분해가 2배 이상 나타난 것으로 보아 설비 운전 조건 최적화를 통해 건설 소재 원료로 활용 가능할 것이라 판단된다. 탈황석고와 탄산화물의 함량별 강도 거동 측정 결과 탄산화물 혼입 모르타르의 장기강도가 더 높은 것으로 나타났으며 이는 탄산화물에 존재하는 CaCO3의 충전제 효과 때문인 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 규제자유특구혁신사업육성 지원에 의한 연구임.

References

  1. C.W. Hargis, I.A. Chen, M. Devenney, M.J. Fernandez, R.J. Gilliam and R.P. Thatcher, "Calcium carbonate cement: A carbon capture, utilization, and storage (CCUS) technique", J. Mater. 14 (2021) 2709.
  2. M.G. Lee, D.W. Kang, H.Y. Jo and J.W. Park, "Carbon dioxide utilization with carbonation using industrial waste-desulfurization gypsum and waste concrete", J. Mater. Cycles Waste Manag. 18 (2016) 407.
  3. M. Zajac, J. Skocek, M. B. Haha and J. Deja, "CO2 mineralization methods in cement and concrete industry", Energies. 15 (2022) 3597.
  4. E. Benhelal, G. Zahedi, E. Shamsaei and A. Bahadori, "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod. 51 (2013) 142.
  5. J.S. Choi, P.S. Jang and Y.J. Jo, "Experimental study on the application of concrete admixture using the EAF reduction slag", JKAIS 15 (2014) 6890.
  6. L. Ma, B. Zhao, H. Shi, F. Sha, C. Liu, H. Du and J. Zhang, "Controllable synthesis of two CaO crystal generations: precursors' synthesis and formation mechanisms", CrystEngComm. 19 (2017) 7132.
  7. A.M. Moncea, A.M. Panait, G. Deak and G. Poteras', "Binder microstructures developed during the hydration process in the system portland cement - calcium aluminate cement - calcium sulfate", Mater. Res. Soc. Symp. Proc. 1812 (2016) 71.
  8. G. Taglieri, V. Daniele, G.D. Re and R. Volpe, "A new and original method to produce Ca(OH)2 nanoparticles by using an anion exchange resin", Adv. Nano Res. 4 (2015) 17.
  9. B. Boudaira, A. Harabi, F. Bouzerara, F. Zenikheri, L. Foughali and A. Cuechi, "Preparation and characterization of membranesupports for microfiltration and ultrafiltration usingkaolin (DD2) and CaCO3", Desalination Water Treat. 57 (2016) 5258.
  10. S.C. Hou and L. Xiang, "Influence of activity of CaSO4·2H2O on hydrothermal formation of CaSO4·0.5H2O whiskers", J. Nanomater. 2013 (2013) 2.
  11. L. Shen, H. Sippola, X. Li, D. Lindber and P. Taskinen, "Thermodynamic modeling of calcium sulfate hydrates in the CaSO4-H2O system from 273.15 to 473.15 K with extension to 548.15 K", J. Chem. Eng. Data. 64 (2019) 2697.
  12. I. Fujii, M. Higano, J. Jamada and K. Tsuchiya, "Studies of an energy storage system by use of the reversible chemical reaction: CaO+H2O ⇌ Ca(OH)2", Sol. Energy 34 (1985) 367.
  13. S. Lin, T. Kiga, Y. Wang and K. Nakayama, "Energy analysis of CaCO3 calcination with CO2 capture", Energy Procedia. 4 (2011) 356.
  14. M. Ali, M.S. Abdulla and S.A. Saad, "Effect of calcium carbonate replacement on workability and mechanical strength of portland cement concrete", Adv. Mat. Res. 1115 (2015) 137.
  15. J. Yang, "Effect of Nano-CaCO3 on concrete compressive strength", IOP Conf. Ser. Earth Environ. Sci. 371 (2019).