DOI QR코드

DOI QR Code

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas

배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발

  • Received : 2023.01.02
  • Accepted : 2023.02.03
  • Published : 2023.02.28

Abstract

Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 산업기술평가관리원의 지원에 의한 연구입니다(No.20018190).

References

  1. Presidential Commission on Carbon Neutrality and Green Growth, "2050 Carbon Neutrality Scenario", Presidential Commission on Carbon Neutrality and Green Growth, 2021. Retrieved from https://2050cnc.go.kr/base/contents/view?contentsNo=10&menuLevel=2&menuNo=12.
  2. J. Y. Kim, "Utilization of new carbon-free sources for carbon-neutral implementation", World Energy Market Insight, Vol. 22, No. 2, 2022, pp. 112. Retrieved from http://www.keei.re.kr/insight?open&p=%2Fweb_energy_new%2Finsight.nsf%2F0%2FC5D4DEB271F05E87492588D3004554DA&s=%3FOpenDocument%26is_popup%3D1.
  3. Y. Xie, C. Qin, Z. Chen, P. Duan, and S. Guo, "The impact of hydrogen addition to natural gas on flame stability", International Journal of Hydrogen Energy, Vol. 47, No. 84, 2022, pp. 3585135863, doi: https://doi.org/10.1016/j.ijhydene.2022.08.137.
  4. L. Guo, M. Zhai, S. Xu, Q. Shen, P. Dong, and X. S. Bai, "Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space", International Journal of Hydrogen Energy, Vol. 47, No. 44, 2022, pp. 19319 19337, doi: https://doi.org/10.1016/j.ijhydene.2022.04.091.
  5. T. B. Kiymaz, E. Boncu, D. Guleryuz, M. Karaca, B. Yilmaz, C. Allouis, and I. Gokalp, "Numerical investigations on flashback dynamics of premixed methane-hydrogen-air laminar flames", International Journal of Hydrogen Energy, Vol. 47, No. 59, 2022, pp. 2502225033, doi: https://doi.org/10.1016/j.ijhydene.2022.05.230.
  6. X. Liu, G. Zhu, T. Asim, and R. Mishra, "Combustion char acterization of hybrid methane-hydrogen gas in domestic swirl stoves", Fuel, Vol. 333, Pt. 2, 2023, pp. 126413, doi: https://doi.org/10.1016/j.fuel.2022.126413.
  7. X. Liu, M. Zhao, M. Feng, and Y. Zhu, "Study on mechanisms of methane/hydrogen blended combustion using reactive molecular dynamics simulation", International Journal of Hydrogen Energy, Vol 48, No. 4, 2022, pp. 16251635, doi: https://doi.org/10.1016/j.ijhydene.2022.10.050.
  8. O. Tuncer, S. Acharya, and J. H. Uhm, "Dynamics, NOx and flashback characteristics of confined premixed hydro gen-enriched methane flames", International Journal of Hydrogen Energy, Vol. 34, No. 1, 2009, pp. 496506, doi: https://doi.org/10.1016/j.ijhydene.2008.09.075.
  9. H. de Vries and H. B. Levinsky, "Flashback, burning velocities and hydrogen admixture: domestic appliance approval, gas regulation and appliance development", Applied Energy, Vol. 259, 2020, pp. 114116, doi: https://doi.org/10.1016/j.apenergy.2019.114116.
  10. B. Alabas, G. Tunc, M. Tastan, and I. Yilmaz, "Experimental investigation of the emission behaviour and flame stability of the oxygen and hydrogen enriched methane under acoustic enforcement", Fuel, Vol. 290, 2021, pp. 120047, doi: https://doi.org/10.1016/j.fuel.2020.120047.
  11. Z. Liu, Y. Xiong, Z. Zhu, Z. Zhang, and Y. Liu, "Effects of hydrogen addition on combustion characteristics of a methane fueled MILD model combustor", International Journal of Hydrogen Energy, Vol. 47, No. 36, 2022, pp. 1630916320, doi: https://doi.org/10.1016/j.ijhydene.2022.03.132.
  12. J. Lai, U. Ahmed, M. Klein, and N. Chakraborty, "A comparison between head-on quenching of stoichiometric methane-air and hydrogen-air premixed flames using Direct Numerical Simulations", International Journal of Heat and Fluid Flow, Vol. 93, 2022, pp. 108896, doi: https://doi.org/10.1016/j.ijheatfluidflow.2021.108896.
  13. Q. Peng, Y. Wu, J. E, W. Yang, H. Xu, and Z. Li, "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube", Applied Energy, Vol. 242, 2019, pp. 424438, doi: https://doi.org/10.1016/j.apenergy.2019.03.137.
  14. S. J. An, J. J. Park, Y. S. Bae, and Y. J. Lee, "Simulation analysis of MILD combustion and NOx formation for methane hydrogen mixture using 0D model", Trans. of Korean Hydrogen and New Energy Society, Vol. 33, No. 4, 2022, pp. 400412, doi: https://doi.org/10.7316/KHNES.2022.33.4.400.
  15. Y. S. Song, "Hydrogen mixture turbine conversion using gas turbine retrofit", Journal of the KSME, Vol. 62, No. 3, 2022, pp. 3842. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11056410. 1056410
  16. Y. J. Joo, M. Y. Kim, J. K. Park, S. I. Park, and J. G Shin, "Hydrogen enriched gas turbine: core technologies and R&D trend", Trans. of Korean Hydrogen and New Energy Society, Vol. 31, No. 4, 2020, pp. 351362, doi: https://doi.org/10.7316/KHNES.2020.31.4.351.
  17. J. S. Seo, Y. J. Kim, J. K. Park, and C. E. Lee, "A study on the thermal and pollution performances of the heating boilers with NG-H2 mixture ratio", Trans. of Korean Hydrogen and New Energy Society,Vol. 32, No. 6, 2021, pp. 573584, doi: https://doi.org/10.7316/KHNES.2021.32.6.573.