DOI QR코드

DOI QR Code

Levy-type solution for analysis of a magneto-electro-elastic panel

  • Jia He (College of Civil Engineering, Chengdu Aeronautic Polytechnic) ;
  • Xuejiao Zhang (China Machinery International Engineering Design & Research Institute Co.,Ltd) ;
  • Hong Gong (College of Civil Engineering, Chengdu Aeronautic Polytechnic) ;
  • H. Elhosiny Ali (Department of Physics, Faculty of Science, King Khalid University) ;
  • Elimam Ali (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University)
  • Received : 2021.10.24
  • Accepted : 2023.02.13
  • Published : 2023.03.25

Abstract

This paper studies electro-magneto-mechanical bending studying of the cylindrical panels based on shear deformation theory. The cylindrical panel is constrained with two simply-supported edges at longitudinal direction and two clamped boundary conditions at circumferential direction. The governing equations are derived based on the principle of virtual work in cylindrical coordinate system. Levy-type solution of the governing equations is derived to reduce two dimensional PDEs to a 2D ODEs. The reduced ordinary differential equation is solved using the Eigen-value Eigen-vector method for the clamped-clamped boundary condition. The electro-magneto-mechanical bending results are obtained to show that every displacement, rotation and electromagnetic potentials how change with changes of initial electromagnetic potentials and mechanical loads along longitudinal and circumferential directions.

Keywords

References

  1. Adamian, A., Hosseini Safari, K., Sheikholeslami, M., Habibi, M. Al-Furjan, M.S.H. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Chen, G., Safarpour, M. and Safarpour, H. (2021b), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doublycurved panel", Eur. J. Mech.-A/Solids, 85, 104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  3. Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via twodimensional analysis", Thin. Walled. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  4. Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W. and Tounsi, A. (2021a), "On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel", Compos. Struct., 255, 112947. https://doi.org/10.1016/j.compstruct.2020.112947.
  5. Al-Furjan, M.S.H., Samimi-Sohrforozani, E., Habibi, M., Jung, D.W. and Safarpour, H. (2021c), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 257, 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
  6. Alibeigloo, A. (2020), "Three-dimensional thermoelasticity analysis of graphene platelets reinforced cylindrical panel", Eur. J. Mech.A/Solids., 81, 103941. https://doi.org/10.1016/j.euromechsol.2019.103941.
  7. An, D., Xu, D., Ni, Z., Wang, Y.S.B. and Li, R. (2020), "Finite integral transform method for analytical solutions of static problems of cylindrical shell panels", Eur. J. Mech.-A/Solids, 83, 104033. https://doi.org/10.1016/j.euromechsol.2020.104033.
  8. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thickwalled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
  9. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009.
  10. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
  11. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002.
  12. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.
  13. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  14. Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
  15. Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multifield equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
  16. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
  17. Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378.
  18. Arefi, M. and Zenkour A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
  19. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. & Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652.
  20. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electroelastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333.
  21. Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497.
  22. Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F., Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Applied Sciences (Switzerland), 9(8), 1580. https://doi.org/10.3390/app9081580.
  23. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST". J. Sandw. Struct. & Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.
  24. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  25. Arefi, M., Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  26. Arefi, M., Rahimi, G.H., Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci, 6 (27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  27. Arefi, M., Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
  28. Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256, 106639. https://doi.org/10.1016/j.compstruc.2021.106639.
  29. Bhagat, S., Pitchaimani, J. and Murigendrappa, S.M. (2016), "Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load", Steel. Compos. Struct., 22(6), 1359-1389. https://doi.org/10.12989/scs.2016.22.6.1359.
  30. Biswal, M., Sahu, S.Kr., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shellexperimental and FEM results", Steel. Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445.
  31. Brendel, B., Ramm, E. (1980), "Linear and nonlinear stability analysis of cylindrical shells", Comput. Struct., 12(4), 549-558. https://doi.org/10.1016/0045-7949(80)90130-3.
  32. Chen, H., Miao, Y., Chen, Y., Fang, L., Zeng, L. and Shi, J. (2021), "Intelligent Model-based Integrity Assessment of Nonstationary Mechanical System", J. Web. Eng., 20(2). https://doi.org/10.13052/jwe1540-9589.2022.
  33. Cheung, Y.K. and Cheung, M.S. (1972), "Vibration analysis of cylindrical panels", J. Sound. Vib., 22(1), 59-73. https://doi.org/10.1016/0022-460X(72)90844-9.
  34. Cui, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Ali, H.M., Yang, M., Gao, T. and Li, R. (2022), "Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication", J. Manuf. Proc., 80, 273-286. https://doi.org/10.1016/j.jmapro.2022.06.003.
  35. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X. and Zhao, W. (2020), "Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation", Matter, 2(6), 1582-1593. https://doi.org/10.1016/j.matt.2020.04.001.
  36. Gao, T., Li, C., Yang, M., Zhang, Y., Jia, D., Ding, W., Debnath, S. Yu, T., Said, Z. and Wang. J. (2021), "Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant", J. Mater. Proc. Tech., 290, 116976. https://doi.org/10.1016/j.jmatprotec.2020.116976.
  37. Guo, C., Ye, C., Ding, Y. and Wang, P. (2021), "A Multi-State Model for Transmission System Resilience Enhancement Against Short-Circuit Faults Caused by Extreme Weather Events", IEEE. Transact. Power. Delivery., 36(4), 2374-2385. https://doi.org/10.1109/TPWRD.2020.3043938.
  38. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst Signal. Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  39. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech. 13(04), 2150040. https://doi.org/10.1142/S175882512150040X.
  40. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput. https://doi.org/10.1007/s00366-021-01456-x.
  41. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput. https://doi.org/10.1007/s00366-021-01395-7.
  42. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021a), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., https://doi.org/10.1007/s00366-021-01320-y.
  43. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civ. Mech. Eng. 21, 139, https://doi.org/10.1007/s43452-021-00291-7.
  44. Isavand, S., Bodaghi, M., Shakeri M. and Aghazadeh Mohandesi, J. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermomechanical loadings", Steel. Compos. Struct., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001.
  45. Jiao, J., Ghoreishi, S-M Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magnetoelectro-elastic nanosystem", Eng. Comput. https://doi.org/10.1007/s00366-021-01391-x.
  46. Keshav, V., Patel, S.N. and Kumar, R. (2019), "Stability and Failure Study of Suddenly Loaded Laminated Composite Cylindrical Panel", Int. J. Appl. Mech., 11(10), 1950093. https://doi.org/10.1142/S1758825119500935.
  47. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M (2022), "Analysis of Thick-Walled Spherical Shells Subjected to Various Temperature Gradients: Thermo-Elasto-Plastic and Residual Stress Studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052.
  48. Kim, Y. and Park, J. (2020), "An approximate approach on the buckling analysis of a composite lattice cylindrical panel", Adv. Compos. Mater., 29(6), 603-630. https://doi.org/10.1080/09243046.2020.1755100
  49. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F. Tounsi, A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel. Compos. Struct. 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
  50. Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel. Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.
  51. Li, R., Zheng, X., Yang, Y., Huang, M. and Huang, X. (2019), "Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels", Appl. Math. Modelling., 76, 900-917. https://doi.org/10.1016/j.apm.2019.07.020.
  52. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput. https://doi.org/10.1007/s00366-021-01454-z.
  53. Lu, C., Zhou, H., Li, L., Yang, A., Xu, C., Ou, Z. and Tian, F. (2022a), "Split-core magnetoelectric current sensor and wireless current measurement application", Measurement: J. Int. Measur. Confed., 188, 110527. https://doi.org/10.1016/j.measurement.2021.110527.
  54. Lu, Z., Gu, D., Ding, H., Lacarbonara, W. and Chen, L. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal. Proces., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490.
  55. Lu, Z., Liu, W., Ding, H. and Chen, L. (2022b), "Energy Transfer of an Axially Loaded Beam with a Parallel-Coupled Nonlinear Vibration Isolator", J. Vib. Acoust., 144(5). https://doi.org/10.1115/1.4054324.
  56. Ma, L., Liu, X. and Moradi, Z. (2022), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput. 38, 2583-2607. https://doi.org/10.1007/s00366-020-01210-9.
  57. Mirjavadi, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel. Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  58. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified straingradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  59. Muhammad, I., Ali, A., Zhou, L., Zhang, W. and Wong, P.K.J. (2022), "Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer", J. Alloys. Compounds., 909, 164797. https://doi.org/10.1016/j.jallcom.2022.164797.
  60. Pan, X., Wu, W., Yu, X., Lu, L., Guo, C. and Zhao, Y. (2023), "Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 ℃", Superconductor. Sci. Techn. https://doi.org/1088/1361-6668/acb740. 1088/1361-6668/acb740
  61. Peng, Y., Shi, C., Zhu, Y., Gu, M. and Zhuang, S. (2020), "Terahertz spectroscopy in biomedical field: a review on signalto-noise ratio improvement", PhotoniX 1, 12. https://doi.org/10.1186/s43074-020-00011-z.
  62. Pourmoayed, A.R., Malekzadeh Fard, K. and Shahravi, M. (2017), "Vibration Analysis of a Cylindrical Sandwich Panel with Flexible Core Using an Improved Higher-Order Theory", Lat. Am. J. Solids Struct. 14(4), https://doi.org/10.1590/1679-78253410.
  63. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech., 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6.
  64. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
  65. Redekop, D. and Makhoul, E. (2000), "Use of the differential quadrature method for the buckling analysis of cylindrical shell panels", Struct. Eng. Mech., 10(5), 451-462. https://doi.org/10.12989/sem.2000.10.5.45.
  66. Shaban, M. and Mazaheri, H. (2021), "Bending analysis of fivelayer curved functionally graded sandwich panel in magnetic field: closed-form solution", Appl. Math. Mech. -Engl. Ed., 42, 251-274. https://doi.org/10.1007/s10483-021-2675-7.
  67. Sharma, J.N., Pal, M. and Chand, D. (2004), "Three-dimensional vibration analysis of a piezothermoelastic cylindrical panel", Int. J. Eng. Sci., 42(15-16), 1655-1673. https://doi.org/10.1016/j.ijengsci.2004.01.006.
  68. Shi, J., Zhao, B., He, T., Tu, L., Lu, X. and Xu, H. (2023), "Tribology and dynamic characteristics of textured journalthrust coupled bearing considering thermal and pressure coupled effects", Trib. Int., 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292
  69. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin. Walled. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  70. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel. Compos. Struct. 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  71. Twinkle, C.M., Nithun, C., Pitchaimani, J. and Rajamohan, V. (2021), "Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation", Proc. The. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406220936738.
  72. Wang, X. and Lyu, X. (2021), "Experimental study on vertical water entry of twin spheres side-by-side", Ocean. Eng., 221, 108508. https://doi.org/10.1016/j.oceaneng.2020.108508.
  73. Wang, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Yang, M. and Gao, T. (2022), "Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning", The. Int. J. Adv. Manuf. Tech., 119(1-2), 631-646. https://doi.org/10.1007/s00170-021-08235-4).
  74. Xiao, X., Zhang, H., Li, Z., Chen, F. and Rasulo, A. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading", Math. Prob. Eng., 7034588. https://doi.org/10.1155/2022/7034588.
  75. Xie, L., Zhu, Y., Yin, M., Wang, Z., Ou, D., Zheng, H. and Yin, G. (2022). "Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile", Mech. Syst. Signal. Proces., 178, 109243. https://doi.org/10.1016/j.ymssp.2022.109243.
  76. Xu, W., Li, C., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M. Gao, T., Liu, M., Wang, X., Said, Z., Liu, X. and Zou. Z. (2022), "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf., 4. 042003. https://doi.org/10.1088/2631-7990/ac9652.
  77. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution, Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  78. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H. and Wang, J. (2019). "Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions", Ceram. Int., 45(12), 14908-14920. https://doi.org/10.1016/j.ceramint.2019.04.226.
  79. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R. and Wang, J., (2017), "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tools. Manu., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.
  80. Yang, Y.Y., Gong, Y.D., Li, C.H., Wen, X.L. and Sun, J.Y. (2021), "Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process", J. Mater. Proc. Tech., 291, 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023.
  81. Yin, M., Zhu, Y., Yin, G., Fu, G. and Xie, L. (2022), "Deep Feature Interaction Network for Point Cloud Registration, With Applications to Optical Measurement of Blade Profiles", IEEE. Trans. Indust. Inf. https://doi.org/10.1109/TII.2022.3220889.
  82. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic highorder computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst Signal. Proc., 165, 108373, https://doi.org/10.1016/j.ymssp.2021.108373.
  83. Yuan, Q., Kato, B., Fan, K. and Wang, Y. (2023), "Phased array guided wave propagation in curved plates", Mech. Syst. Signal. Proces., 185, 109821. https://doi.org/10.1016/j.ymssp.2022.109821
  84. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022d), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572 https://doi.org/10.1016/j.istruc.2022.09.094.
  85. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022c), "Numerical Study on Welding Residual Stress Distribution of Corrugated Steel Webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831.
  86. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q. and Cao, H. (2018), "Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Clean. Prod., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009.
  87. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyous, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  88. Zhang, L., Zhang, J., Wang, X., Tao, M., Dai, G., Wu, J. and Lin, X. (2022b), "Design of coherent wideband radiation process in a Nd3+-doped high entropy glass system", Light: Sci. & Appl., 11(1), 181. https://doi.org/10.1038/s41377-022-00848-y.
  89. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Frequency analysis of cylindrical panels using a wave propagation approach", Appl. Acoust., 62(5), 527-543. https://doi.org/10.1016/S0003-682X(00)00059-1.
  90. Zhang, Y., Li, C., Ji, H., Yang, X., Yang, M., Jia, D., Zhang, X., Li, R. and Wang, J. (2017), "Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms", Int. J. Machine Tools Manufact., 122, 81-97. https://doi.org/10.1016/j.ijmachtools.2017.06.002.
  91. Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Nibased alloy grinding", Int. J. Machine Tools Manufact., 99, 19-33. https://doi.org/10.1016/j.ijmachtools.2015.09.003.
  92. Zhang, Z., Du, M., Li, Y., Liu, W., Wu, H., Cui, L. and Li, M. (2022), "Effects of mooring configuration on the dynamic behavior of a TLP with tendon failure". Desalination. Water. Treat., 268, 215-228. https://doi.org/10.5004/dwt.2022.28692.
  93. Zhang, Z., Sui, M., Li, C., Zhou, Z., Liu, B., Chen, Y., Said, Z., Debnath, S. and Sharma, S. (2021), "Residual stress of MoS2 nano-lubricant grinding cemented carbide", Int. J. Adv. Manuf. Tech., https://doi.org/10.1007/s00170-022-08660-z.
  94. Zhao, R., Dai, H. and Yao, H. (2022), "Liquid-Metal Magnetic Soft Robot with Reprogrammable Magnetization and Stiffness", IEEE. Robot. Autom. Let., 7(2), 4535-4541. https://doi.org/10.1109/LRA.2022.3151164.
  95. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2022), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput. 38, 939-961. https://doi.org/10.1007/s00366-020-01242-1.
  96. Zheng, X., Ni, Z., Xu, D., Wang, Z., Liu, M., Li, Y., Du, J. and Li, R. (2021), "New analytic buckling solutions of non-Levy-type cylindrical panels within the symplectic framework", Appl. Math. Modelling., 98, 398-415. https://doi.org/10.1016/j.apm.2021.05.017.
  97. Zheng, X., Sun, Y., Huang, M., An, D., Li, P., Wang, B. and Li, R. (2019), "Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels", Int. J. Mech. Sci., 152, 432-442. https://doi.org/10.1016/j.ijmecsci.2019.01.012.
  98. Zhong, T., Wang, W., Lu, S., Dong, X. and Yang, B. (2022), "RMCHN: A Residual Modular Cascaded Heterogeneous Network for Noise Suppression in DAS-VSP Records", IEEE Geosci. Remote. Sensing. Let., 20. https://doi.org/10.1109/LGRS.2022.3229556.
  99. Zhou, C., Ni, Z., Zheng, X., Wang, B. and Li, R. (2022), "On new benchmark free vibration solutions of rectangular sandwich panels within the symplectic solution framework", J. Sandw. Struct. Mater., 1883-1904. https://doi.org/10.1177/10996362221106780.
  100. Zhou, Y., Stanciulescu, I., Eason, T. and Spottswood, M. (2015), "Nonlinear elastic buckling and postbuckling analysis of cylindrical panels", Finite. Elem. Anal., Des., 96, 41-50. https://doi.org/10.1016/j.finel.2014.12.001.