DOI QR코드

DOI QR Code

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian (School of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University) ;
  • Xuhong Zhou (School of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University) ;
  • Ke Ke (School of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University) ;
  • Michael C.H. Yam (Department of Building and Real Estate, Chinese National Engineering Research Centre for Steel Construction, The Hong Kong Polytechnic University) ;
  • Yuhang Wang (School of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University) ;
  • Zi Gu (Department of Civil Engineering, Hunan University) ;
  • Miaojun Sun (Powerchina Huadong Engineering Corporation Limited)
  • Received : 2022.07.10
  • Accepted : 2022.11.24
  • Published : 2023.03.25

Abstract

A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.

Keywords

Acknowledgement

This work was supported by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (Project Number: 2022C03009) and the National Natural Science Foundation of China (Grant No. 52178111 and 51890902).

References

  1. Bai, J.L., He, J., Li, C., Jin, S.S. and Yang, H. (2022), "Experimental investigation on the seismic performance of a novel damage-control replaceable RC beam-to-column joint", Eng. Struct., 267, 114692. https://doi.org/10.1016/j.engstruct.2022.114692
  2. Bian, J. and Jing, X.J. (2019), "Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure", Mech. Syst. Signal Process., 125, 21-51. https://doi.org/10.1016/j.ymssp.2018.02.014
  3. Bian, J. and Jing, X.J. (2020), "Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range", Nonlinear Dyn., 101(4), 2195-2222. https://doi.org/10.1007/s11071-020-05878-y
  4. Bian, J. and Jing, X.J. (2021), "A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber)", Commun. Nonlinear Sci. Numer. Simul., 99, 105829. https://doi.org/10.1016/j.cnsns.2021.105829
  5. Bian, J., Zhou, X.H., Ke, K., Yam, M.C.H. and Wang, Y.H. (2022), "Seismic resilient steel substation with BI-TMDI: A theoretical model for optimal design", J. Constr. Steel Res., 192, 107233. https://doi.org/10.1016/j.jcsr.2022.107233
  6. Carrella, A., Brennan, M.J., Waters, T.P. and Lopes, J.V. (2012), "Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness", Int. J. Mech. Sci., 55(1), 22-29. https://doi.org/10.1016/j.ijmecsci.2011.11.012
  7. Chai, Y.Y., Jing, X.J. and Guo, Y.Q. (2022), "A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property", Mech. Syst. Signal Process., 168, 108651. https://doi.org/10.1016/j.ymssp.2021.108651
  8. Chen, H. and Bai, J.L. (2021), "Seismic performance evaluation of buckling-restrained braced RC frames considering stiffness and strength requirements and low-cycle fatigue behaviors", Eng. Struct., 239, 112359. https://doi.org/10.1016/j.engstruct.2021.112359
  9. Chen, Y. and Ke, K. (2019), "Seismic performance of high-strength-steel frame equipped with sacrificial beams of non-compact sections in energy dissipation bays", Thin-Wall. Struct., 139, 169-185. https://doi.org/10.1016/j.tws.2019.02.035
  10. Chen, R.Z., Li, X.P., Yang, Z.M., Xu, J.C. and Yang, H.X. (2021), "A variable positive-negative stiffness joint with low frequency vibration isolation performance", Measurement, 185, 110046. https://doi.org/10.1016/j.measurement.2021.110046
  11. Deng, T.C., Wen, G.L., Ding, H., Lu, Z.Q. and Chen, L.Q. (2020), "A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck", Mech. Syst. Signal Process., 145, 106967. https://doi.org/10.1016/j.ymssp.2020.106967
  12. Ding, H. and Chen, L.Q. (2019), "Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators", Nonlinear Dyn., 95(3), 2367-2382. https://doi.org/10.1007/s11071-018-4697-9
  13. Du, K., Cheng, F., Bai, J.L. and Jin, S.S. (2020), "Seismic performance quantification of buckling-restrained braced RC frame structures under near-fault ground motions", Eng. Struct., 211, 110447. https://doi.org/10.1016/j.engstruct.2020.110447
  14. Duan, Y.X., Wei, X.Y., Wang, H.R., Zhao, M.H., Ren, Z.M., Zhao, H.Y. and Ren, J. (2020), "Design and numerical performance analysis of a microgravity accelerometer with quasi-zero stiffness", Smart Mater. Struct., 29(7), 075018. https://doi.org/10.1088/1361-665X/ab8838
  15. Feng, X., Jing, X.J., Xu, Z.D. and Guo, Y.Q. (2019), "Bio-inspired anti-vibration with nonlinear inertia coupling", Mech. Syst. Signal Process., 124, 562-595. https://doi.org/10.1016/j.ymssp.2019.02.001
  16. Gatti, G. (2020), "Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections", Commun. Nonlinear Sci. Numer. Simul., 83, 105143. https://doi.org/10.1016/j.cnsns.2019.105143
  17. Guan, M., Liu, W., Lai, M.H., Du, H., Cui, J. and Gan, Y. (2019), "Seismic behavior of innovative composite walls with high-strength manufactured sand concrete", Eng. Struct., 195, 182-199. https://doi.org/10.1016/j.engstruct.2019.05.096
  18. Hao, Z.F. and Cao, Q.J. (2015), "The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness", J. Sound Vib., 340, 61-79. https://doi.org/10.1016/j.jsv.2014.11.038
  19. Hao, Z.F., Cao, Q.J. and Wiercigroch, M. (2017), "Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses", Nonlinear Dyn., 87(2), 987-1014. https://doi.org/10.1007/s11071-016-3093-6
  20. He, X., Chen, Y., Ke, K., Shao, T. and Yam, M.C.H. (2022), "Development of a connection equipped with fuse angles for steel moment resisting frames", Eng. Struct., 265, 114503. https://doi.org/10.1016/j.engstruct.2022.114503
  21. Ho, J.C.M., Ou, X.L., Chen, M.T., Wang, Q. and Lai, M.H. (2020), "A path dependent constitutive model for CFFT column", Eng. Struct., 210, 210367. https://doi.org/10.1016/j.engstruct.2020.110367
  22. Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193
  23. Hu, S.L. and Wang, W. (2021), "Seismic design and performance evaluation of low-rise steel buildings with self-centering energy-absorbing dual rocking core systems under far-field and near-fault ground motions", J. Constr. Steel Res., 179, 106545. https://doi.org/10.1016/j.jcsr.2021.106545
  24. Hu, S.L., Wang, W. and Qu, B. (2020), "Seismic evaluation of low-rise steel building frames with self-centering energy-absorbing rigid cores designed using a force-based approach", Eng. Struct., 204, 110038. https://doi.org/10.1016/j.engstruct.2019.110038
  25. Hu, S.L., Zhu, S.Y., Alam, M.S. and Wang, W. (2022a), "Machine learning-aided peak and residual displacement-based design method for enhancing seismic performance of steel moment-resisting frames by installing self-centering braces", Eng. Struct., 271, 114935. https://doi.org/10.1016/j.engstruct.2022.114935
  26. Hu, S.L., Qiu, C.X. and Zhu, S. (2022b), "Machine learning-driven performance-based seismic design of hybrid selfcentering braced frames with SMA braces and viscous dampers", Smart Mater. Struct., 31(10), 105024. https://doi.org/10.1088/1361-665X/ac8efc
  27. Hu, S.L., Wang, W., Alam, M.S. and Ke, K. (2023), "Life-cycle benefits estimation of self-centering building structures", Eng. Struct., 284, 115982. https://doi.org/10.1016/j.engstruct.2023.115982
  28. Hua, J., Wang, F., Xue, X., Ding, Z. and Chen, Z. (2022), "Residual monotonic mechanical properties of bimetallic steel bar with fatigue damage", J. Build. Eng., 55, 104703. https://doi.org/10.1016/j.jobe.2022.104703
  29. Huang, X.G., Zhou, Z., Eatherton, M.R., Zhu, D. and Guo, C. (2020), "Experimental investigation of self-centering beams for moment-resisting frames", J. Struct. Eng., 146(3), 04019214. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002530
  30. Huang, X.G., Liu, Y. and Sun, X. (2022), "Concept and analysis of resilient frictional shear connector for coupled system", J. Build. Eng., 50, 104172. https://doi.org/10.1016/j.jobe.2022.104172
  31. Ibrahim, R.A. (2008), "Recent advances in nonlinear passive vibration isolators", J. Sound Vib., 314(3-5), 371-452. https://doi.org/10.1016/j.jsv.2008.01.014
  32. Jin, S.S., Ai, P., Zhou, J. and Bai, J.L. (2022), "Seismic performance of an assembled self-centering buckling-restrained brace and its application in arch bridge structures", J. Constr. Steel Res., 199, 107600. https://doi.org/10.1016/j.jcsr.2022.107600
  33. Jing, X.J., Zhang, L.L., Feng, X., Sun, B. and Li, Q.K. (2019), "A novel bio-inspired anti-vibration structure for operating handheld jackhammers", Mech. Syst. Signal Process., 118, 317-339. https://doi.org/10.1016/j.ymssp.2018.09.004
  34. Jing, X.J., Chai, Y.Y., Chao, X. and Bian, J. (2021), "In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms", Mech. Syst. Signal Process., 170, 108267. https://doi.org/10.1016/j.ymssp.2021.108267
  35. Ke, K. and Chen, Y. (2014), "Energy-based damage-control design of steel frames with steel slit walls", Struct. Eng. Mech., Int. J., 52(6), 1157-1176. https://doi.org/10.12989/sem.2014.52.6.1157
  36. Ke, K. and Yam, M.C.H. (2016), "Energy-factor-based damagecontrol evaluation of steel MRF systems with fuses", Steel Compos. Struct., Int. J., 22(3), 589-611. http://doi.org/10.12989/scs.2016.22.3.589
  37. Ke, K., Wang, W., Yam, M.C.H. and Deng, L. (2019a), "Residual displacement ratio demand of oscillators representing HSSF-EDBs subjected to near-fault earthquake ground motions", Eng. Struct., 191, 598-610. https://doi.org/10.1016/j.engstruct.2019.04.054
  38. Ke, K., Wang, F., Yam, M.C.H., Deng, L. and He, Y. (2019b), "A multi-stage-based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls", Eng. Struct., 183, 1091-1108. https://doi.org/10.1016/j.engstruct.2019.01.029
  39. Ke, K., Yam, M.C., Zhang, P., Shi, Y., Li, Y. and Liu, S. (2023a), "Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective", J. Constr. Steel Res., 204, 107837. https://doi.org/10.1016/j.jcsr.2023.107837
  40. Ke, K., Chen, Y.H., Zhou, X.H., Yam, M.C.H. and Hu, S.L. (2023b), "Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism", Thin-Wall. Struct., 182, 110249. https://doi.org/10.1016/j.tws.2022.110249
  41. Kovacic, I., Brennan, M.J. and Waters, T.P. (2008), "A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic", J. Sound Vib., 315(3), 700-711. https://doi.org/10.1016/j.jsv.2007.12.019
  42. Lai, M.H. and Ho, J.C.M. (2017), "An analysis-based model for axially loaded circular CFST columns", Thin-Wall. Struct., 119, 770-781. https://doi.org/10.1016/j.tws.2017.07.024
  43. Lai, M.H., Song, W., Ou, X.L., Chen, M.T., Wang, Q. and Ho, J.C.M. (2020), "A path dependent stress-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312
  44. Li, H.T., Ding, H., Jing, X.J., Qin, W.Y. and Chen, L.Q. (2021), "Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well", Mech. Syst. Signal Process., 159, 107805. https://doi.org/10.1016/j.ymssp.2021.107805
  45. Li, Y.W., Yam, M.C.H., Zhang, P., Ke, K. and Wang, Y.B. (2022), "Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces", Struct. Eng. Mech., Int. J., 82(5), 611-628. https://doi.org/10.12989/sem.2022.82.5.611
  46. Ling, P., Miao, L., Zhang, W., Wu, C. and Yan, B. (2022), "Cockroach-inspired structure for low-frequency vibration isolation", Mech. Syst. Signal Process., 171, 108955. https://doi.org/10.1016/j.ymssp.2022.108955
  47. Liu, C.C., Jing, X.J., Daley, S. and Li, F.M. (2015), "Recent advances in micro-vibration isolation", Mech. Syst. Signal Process., 56, 55-80. https://doi.org/10.1016/j.ymssp.2014.10.007
  48. Liu, C.R., Zhao, R., Yu, K.P., Lee, H.P. and Liao, B.P. (2021), "A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams", Energy, 233, 121146.
  49. Lu, Y., Liu, Y., Wang, Y., Liu, J. and Huang, X.G. (2023), "Development of a novel buckling-restrained damper with additional friction energy dissipation: Component tests and structural verification", Eng. Struct., 274, 115188. https://doi.org/10.1016/j.engstruct.2022.115188
  50. Mao, Y. and Saharabudhe, S. (2006), "Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAVS system", Struct. Eng. Mech., Int. J., 24(3), 375-393. https://doi.org/10.12989/sem.2006.24.3.375
  51. Orlando, D. and Goncalves, P.B. (2013), "Hybrid nonlinear control of a tall tower with a pendulum absorber", Struct. Eng. Mech., Int. J., 46(2), 153-177. https://doi.org/10.12989/sem.2013.46.2.153
  52. Oyelade, A.O. (2020), "Experiment study on nonlinear oscillator containing magnetic spring with negative stiffness", Int. J. Non-Linear Mech., 120, 103396. https://doi.org/10.1016/j.ijnonlinmec.2019.103396
  53. Ren, F.M., Tian, S.Y., Gong, L., Wu, J.L., Mo, J.X., Lai, C.L. and Lai, M.H. (2023), "Seismic performance of a ring beam joint connecting FTCES column and RC/ESRC beam with NSC", J. Build. Eng., 105366. https://doi.org/10.1016/j.jobe.2022.105366
  54. Shaw, A.D., Gatti, G., Goncalves, P.J.P., Tang, B. and Brennan, M.J. (2021), "Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure", Mech. Syst. Signal Process., 152, 107354. https://doi.org/10.1016/j.ymssp.2020.107354
  55. Shi, Y., Luo, Z., Zhou, X., Xue, X. and Li, J. (2022), "Post-fire mechanical properties of titanium-clad bimetallic steel in different cooling approaches", J. Constr. Steel Res., 191, 107169. https://doi.org/10.1016/j.jcsr.2022.107169
  56. Shi, Y., Wang, J., Zhou, X. and Xue, X. (2023), "Post-fire properties of stainless - clad bimetallic steel produced by explosive welding process", J. Constr. Steel Res., 201, 107690. https://doi.org/10.1016/j.jcsr.2022.107690
  57. Valeev, A., Tashbulatov, R. and Mastobaev, B. (2021), "Designing and experimental study of compact vibration isolator with quasi-zero stiffness", Struct. Eng. Mech., Int. J., 79(4), 415-428. https://doi.org/10.12989/sem.2021.79.4.415
  58. Wang, Y. and Jing, X.J. (2019), "Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure", Mech. Syst. Signal Process., 125, 142-169. https://doi.org/10.1016/j.ymssp.2018.03.045
  59. Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D.L. and Yang, Y. (2020a), "A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism", Nonlinear Dyn., 101(2), 755-773. https://doi.org/10.1007/s11071-020-05806-0
  60. Wang, L., Zhang, Y.W., Ho, J.C.M. and Lai, M.H. (2020b), "Fatigue behaviour of composite sandwich beams strengthened with GFRP stiffeners", Eng. Struct., 214, 110596. https://doi.org/10.1016/j.engstruct.2020.110596
  61. Wang, Q., Zhou, J.X., Xu, D.L. and Ouyang, H.J. (2020c), "Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport", Mech. Syst. Signal Process., 139, 106633. https://doi.org/10.1016/j.ymssp.2020.106633
  62. Wang, K., Zhou, J.X., Ouyang, H.J., Chang, Y.P. and Xu, D.L. (2021), "A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy", Mech. Syst. Signal Process., 151, 107368. https://doi.org/10.1016/j.ymssp.2020.107368
  63. Wang, L., Sun, J., Ding, T., Liang, Y., Ho, J.C.M. and Lai, M.H. (2022), "Manufacture and behaviour of innovative 3D printed auxetic composite panels subjected to low-velocity impact load", Structures, 38, 910-933. https://doi.org/10.1016/j.istruc.2022.02.033
  64. Wu, W.J., Chen, X.D. and Shan, Y.H. (2014), "Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness", J. Sound Vib., 333(13), 2958-2970. https://doi.org/10.1016/j.jsv.2014.02.009
  65. Wu, Z., Jing, X.J., Bian, J., Li, F.M. and Allen, R. (2015), "Vibration isolation by exploring bio-inspired structural nonlinearity", Bioinspir. Biomim., 10(5), 056015. https://doi.org/10.1088/1748-3190/10/5/056015
  66. Xu, D.L., Yu, Q.P., Zhou, J.X. and Bishop, S.R. (2013), "Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic", J. Sound Vib., 332(14), 3377-3389. https://doi.org/10.1016/j.jsv.2013.01.034
  67. Yam, M.C.H., Ke, K., Lam, A.C.C. and Zhao, Q. (2019), "Performance of single-coped beam with slender web and quantification of local web buckling strength", Thin-Wall. Struct., 144, 106355. https://doi.org/10.1016/j.tws.2019.106355
  68. Yam, M.C.H., Ke, K., Huang, Y., Zhou, X.H. and Liu, Y.C. (2022), "A study of hybrid self-centring beam-to-beam connections equipped with shape-memory-alloy-plates and washers", J. Constr. Steel Res., 198, 107526. https://doi.org/10.1016/j.jcsr.2022.107526
  69. Yan, G., Zou, H.X., Wang, S., Zhao, L.C. and Wu, Z.Y. (2022), "Bio-inspired toe-like structure for low-frequency vibration isolation", Mech. Syst. Signal Process., 162, 108010. https://doi.org/10.1016/j.ymssp.2021.108010
  70. Yang, T., Cao, Q.J. and Hao, Z.F. (2021), "A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting", Mech. Syst. Signal Process, 155, 107636. https://doi.org/10.1016/j.ymssp.2021.107636
  71. Yao, Y.H., Li, H.G., Li, Y. and Wang, X.J. (2020), "Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism", Int. J. Mech. Sci., 186, 105888. https://doi.org/10.1016/j.ijmecsci.2020.105888
  72. Ye, K., Ji, J.C. and Brown, T. (2020), "Design of a quasi-zero stiffness isolation system for supporting different loads", J. Sound Vib., 471, 115198. https://doi.org/10.1016/j.jsv.2020.115198
  73. Yi, S., Chen, M.T. and Young, B. (2023), "Design of concrete-filled cold-formed steel elliptical stub columns", Eng. Struct., 276, 115269. https://doi.org/10.1016/j.engstruct.2022.115269
  74. Zhang, R., Wang, W. and Ke, K. (2020), "Quantification of seismic demands of damage-control tension-only concentrically braced steel beam-through frames (TCBSBFs) subjected to near-fault ground motions based on the energy factor", Soil Dyn. Earthq. Eng., 129, 105910. https://doi.org/10.1016/j.soildyn.2019.105910
  75. Zhang, P., Yam, M. C.H., Ke, K., Zhou, X.H. and Chen, Y. (2022), "Steel moment resisting frames with energy-dissipation rocking columns under near-fault earthquakes: Probabilistic performance-based-plastic-design for the ultimate stage", J. Build. Eng., 54, 104625. https://doi.org/10.1016/j.jobe.2022.104625
  76. Zhang, H., Zhou, X.H., Ke, K., Yam, M.C.H., He, X. and Li, H. (2023), "Self-centring hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model", J. Build. Eng., 63, 105451. https://doi.org/10.1016/j.jobe.2022.105451
  77. Zhao, F., Ji, J.C., Ye, K. and Luo, Q.T. (2020), "Increase of quasi-zero stiffness region using two pairs of oblique springs", Mech. Syst. Signal Process., 144, 106975. https://doi.org/10.1016/j.ymssp.2020.106975
  78. Zheng, Y.S., Zhang, X.N., Luo, Y.J., Zhang, Y.H. and Xie, S.L. (2018), "Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness", Mech. Syst. Signal Process., 100, 135-151. https://doi.org/10.1016/j.ymssp.2017.07.028
  79. Zhong, R.M., Zong, Z.H., Pai, P.F. and Ruan, X.W. (2019), "Multi-stopband negative stiffness composite column design for vibration absorption", Thin-Wall. Struct., 144, 106330. https://doi.org/10.1016/j.tws.2019.106330
  80. Zhou, X.H., Zhang, H., Ke, K., Guo, L. and Yam, M.C.H. (2021a), "Damage-control steel frames equipped with SMA connections and ductile links subjected to near-field earthquake motions: A spectral energy factor model", Eng. Struct., 239, 112301. https://doi.org/10.1016/j.engstruct.2021.112301
  81. Zhou, X.H., Ke, K., Yam, M.C.H., Zhao, Q., Huang, Y. and Di, J. (2021b), "Shape memory alloy plates: Cyclic tension-release performance, seismic applications in beam-to-column connections and a structural seismic demand perspective", Thin-Wall. Struct., 167, 108158. https://doi.org/10.1016/j.tws.2021.108158
  82. Zhou, S.H., Liu, Y.L., Jiang, Z.Y. and Ren, Z.H. (2022a), "Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system", Nonlinear Dyn., 110, 153-175. https://doi.org/10.1007/s11071-022-07610-4
  83. Zhou, X.H., Chen, Y., Ke, K., Yam, M.C.H. and Li, H. (2022b), "Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights", J. Build. Eng., 45, 103556. https://doi.org/10.1016/j.jobe.2021.103556
  84. Zhou, Z., Ke, K., Chen, Y. and Yam, M.C.H. (2022c), "High strength steel frames with curved knee braces: performance-based damage-control design framework", J. Constr. Steel Res., 196, 107392. https://doi.org/10.1016/j.jcsr.2022.107392
  85. Zhou, X.H., Tan, Y.C., Ke, K., Yam, M.C.H., Zhang, H.Y. and Xu, J.Y. (2023), "An experimental and numerical study of brace-type long double C-section steel slit dampers", J. Build. Eng., 64, 105555. https://doi.org/10.1016/j.jobe.2022.105555
  86. Zou, D.L., Liu, G.Y., Rao, Z.S., Tan, T., Zhang, W.M. and Liao, W.H. (2021), "A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink", Mech. Syst. Signal Process., 147, 107101. https://doi.org/10.1016/j.ymssp.2020.107101