DOI QR코드

DOI QR Code

Tension Measurement of Stay Cables in Consideration with Image Including Vehicle

차량이 포함된 이미지를 고려한 사장재 케이블의 장력 측정

  • 김성완 (부산대학교 지진방재연구센터 ) ;
  • 박동욱 (부산대학교 지진방재연구센터 ) ;
  • 김진수 (국토안전관리원 특수교관리실 여수분소 ) ;
  • 박승수 (국토안전관리원 특수교관리실 진도분소 ) ;
  • 박재봉 (국토안전관리원 경영관리실)
  • Received : 2023.03.14
  • Accepted : 2023.04.06
  • Published : 2023.04.30

Abstract

In this study, cable tension was measured using the vibration method, and a vision-based system was applied as a sensor to measure the displacement response of a cable in a non-contact method. In the vision-based system, the camera is installed in a location that considers the target structure and the field of view of the camera. However, it can be difficult to recognize the control points required to measure the displacement response of a structure as the target structure and other structures such as vehicles may be included in the image at the intended installation location. In this study, a distorted image including a vehicle shows inaccurate results in image analysis due to the installation position of the vision-based system. Accordingly, the image including the vehicle was eliminated by calculating the similarity between the two images. To verify the validity of the method of estimating the cable tension of cable-stayed bridges using the proposed method, the vibration method was applied to cable-stayed bridges in service to measure the tension.

이 연구에서는 진동법을 이용하여 케이블 장력을 추정하고 비접촉 방식으로 케이블의 변위 응답을 측정하기 위한 센서로 영상기반시스템을 적용하였다. 영상기반시스템에서 카메라는 대상 구조물과 카메라의 시야를 고려한 위치에 설치된다. 그러나 설치하려는 위치의 이미지에는 대상 구조물과 차량 등의 다른 구조물이 포함될 수 있어 구조물의 변위 응답 측정에 필요한 기준점을 인식하기 어려울 수 있다. 영상기반시스템의 설치 위치로 인해 차량이 포함된 왜곡된 이미지는 이미지 해석에서 부정확한 결과를 나타내므로 두 이미지 사이의 유사성을 산정하여 차량이 포함된 이미지를 제거하였다. 제안된 방법을 이용한 사장교 케이블의 장력을 측정하는 방법의 타당성을 확인하기 위해 공용 중인 사장교에서 진동법을 적용하여 장력을 측정하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1012093).

References

  1. Zhang, L., Qiu, G., and Chen, Z. (2021), Structural health monitoring methods of cables in cable-stayed bridge: A review, Measurement, Journal of the International Measurement Confederation, 168, 108343.
  2. Bao, Y., Shi, Z., Beck, J. L., Li, H., and Hou, T. Y. (2017), Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations, Structural Control and Health Monitoring, 24(3), e1889.
  3. Nazarian, E., Ansari, F., and Azari, H. (2016), Recursive optimization method for monitoring of tension loss in cables of cable-stayed bridges, Journal of Intelligent Material Systems and Structures, 27(15), 2091-2101. https://doi.org/10.1177/1045389X15620043
  4. Au, F. T. K., and Si, X. T. (2012), Time-dependent effects on dynamic properties of cable-stayed bridges, Structural Engineering and Mechanics, 41(1), 139-155. https://doi.org/10.12989/sem.2012.41.1.139
  5. Jiang, C., Wu, C., Cai, C. S., Jiang, X., and Xiong, W. (2020), Corrosion fatigue analysis of stay cables under combined loads of random traffic and wind, Engineering Structures, 206, 110153.
  6. Ma, Y., Peng, A., Wang, L., Dai, L., and Zhang, J. (2021) Structural performance degradation of cable-stayed bridges subjected to cable damage: Model test and theoretical prediction, Structure and Infrastructure Engineering, 1-17.
  7. Kim, S. W., Jeon, B. G., Cheung, J. H., Kim, S. D., and Park, J. B. (2017), Stay cable tension estimation using a vision-based monitoring system under various weather conditions, Journal of Civil Structural Health Monitoring, 7(3), 343-357. https://doi.org/10.1007/s13349-017-0226-7
  8. Kim, J. T., Hguyen, K. D., and Huyuh, T. C. (2013), Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique, Smart Structures and Systems, 12(3-4), 381-397. https://doi.org/10.12989/SSS.2013.12.3_4.381
  9. Zarbaf, S. E. H. A. M., Norouzi, M., Allemang, R. J., Hunt, V. J., Helmicki, A., and Venkatesh, C. (2018), Ironton-Russell Bridge: Application of vibration-based cable tension estimation. Journal of Structural Engineering, 144(6), 04018066.
  10. Fang, Z. and Wang, J. Q. (2012), Practical formula for cable tension estimation by vibration method, Journal of Bridge Engineering, 17(1), 161-164. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000200
  11. Kim, S. W., Kim, N. S. (2013), Dynamic characteristics of suspension bridge hanger cables using digital image processing, Ndt & E International, 59, 25-33. https://doi.org/10.1016/j.ndteint.2013.05.002
  12. Kim, S. W., Cheung, J. H., Kim, S. D. (2018), Cable Tension Measurement of Long-span Bridges Using Vision-based System, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(2), 115-123.
  13. Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P. (2004), Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13(4), 600-612. https://doi.org/10.1109/TIP.2003.819861