References
- R. ALPERIN, R. LANG, One-, two-, and multi-fold origami axioms, Origami 4 (2009), 371-393.
- R. ALPERIN, A mathematical theory of origami constructions and numbers, New York Journal of Mathematics 6 (2010), 119-133.
- D. AUCKLY, J. CLEVELAND, Totally real origami and impossible paper folding, American Mathematical Monthly 102(3) (1995), 215-226. https://doi.org/10.1080/00029890.1995.11990562
- CHOI Jae-ung, Solving polynomial equations by origami and GeoGebra, Ph. M. Thesis, Kongju National University, 2018.
- CHOI Wonbae, Hilbert and Formalism, The Korean Journal for History of Mathematics 24(4) (2011), 33-43.
- T. CHOW, K. FAN, The Power of Multifolds: Folding the Algebraic Closure of the Rational, Origami 4 (2009), 395-404.
- D. COX, Galois theory. 2nd edition. Pure and Applied Mathematics (Hoboken). John Wiley & Sons, Inc., Hoboken, NJ, 2012.
- E. DEMAINE, J. O'Rourke, Geometric folding algorithms: linkages, origami, polyhedra, Cambridge University Press, 2007.
- M. FRIEDMAN, A History of Folding in Mathematics: Mathematizing the Margins, Birkhauser, 2019.
- F. FROBEL, Gesammelte padagogische Schriften, Enslin, 1874.
- O. HENRICI, On congruent figures, Longman, 1879.
- T. HULL, Solving cubics with creases: the work of Beloch and Lill, The American Mathematical Monthly 118(4) (2011), 307-315. https://doi.org/10.4169/amer.math.monthly.118.04.307
- T. HULL, Project Origami: Activities for Exploring Mathematics, 2nd Edition, A K Peters/CRC Press, 2012 .
- T. HULL, Origametry: Mathematical Methods in Paper Folding, Cambridge University Press, 2020.
- H. HUZITA, La recente concezione matematica dell 'origami-trisezione dell' angolo, Scienza e gioco (1985), 433-441.
- J. JUSTIN, Resolution par le pliage de l'equation du troisieme degre et applications geometriques, L' Ouvert (1986), 9-19.
- J. KONIG, D. NEDRENCO, Septic Equations are Solvable by 2-fold Origami, Forum Geometricorum 15 (2016), 193-205.
- R. LANG, Origami Design Secrets: Mathematical Methods for an Ancient Art, A K Peters, 2003.
- D. LARDNER, A treatise on geometry and its application to the arts, the cabinet cyclopaedia, Longman, 1840.
- E. LILL, Resolution graphique des equations numeriques d'un degre quelconque a une inconnue, Nouvelles Annales de Mathematiques 2(6) (1867), 359-362.
- P. MAGRONE, V. TALAMANCA, Folding cubic roots: Margherita Piazzolla Beloch's contributions to elementary geometric constructions, Proceedings, 16th Conference on Applied Mathematics Aplimat (2017), 971-984.
- Y. NISHIMURA, Solving quintic equations by two-fold origami, Forum Mathematicum 27(3) (2015), 1379-1387. https://doi.org/10.1515/forum-2012-0123
- T. ROW, Geometric Exercises in Paper Folding, Open Court, 1901.
- G. VACCA, Della piegatura della carta applicata alla geometria, Periodico di Mathematiche 4(10) (1930) 43-50.
- YANG Seong-Deog, JO Kyeonghee, On Hilbert's 'Grundlagen der Geometrie', The Korean Journal for History of Mathematics 24(4) (2011), 61-86.