DOI QR코드

DOI QR Code

Electrical Energy Production Using Biomass

바이오매스 기반 전기에너지 생산기술 동향 분석

  • Jongseo Lee (Chem-Bio Center, Agency for Defense Development (ADD)) ;
  • Sang-Soo Han (Chem-Bio Center, Agency for Defense Development (ADD)) ;
  • Doyeun Kim (Advanced Defense Science and Technology Research Institute, Agency for Defense Development (ADD)) ;
  • JuHyun Kim (Chem-Bio Center, Agency for Defense Development (ADD)) ;
  • Sangjin Park (Chem-Bio Center, Agency for Defense Development (ADD))
  • Received : 2023.01.30
  • Accepted : 2023.03.09
  • Published : 2023.03.25

Abstract

Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

Keywords

Acknowledgement

이 논문은 2021년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구입니다(915009201).

References

  1. Bae, J.H., Kim, H.W., Shin, D.W., Kim, D.W., Kim, J.W., Lee, S.J., Lee, J.Y., Lee, S.H., Lee, S.W., and Nam, S.U., 2021, "Impacts of the RE100 initiative on major Korean export industries", KDI School of Public Policy and Management, file:///C:/Users/KSNRE/Downloads/2_White+Paper-The+Effect+of+RE100+on+Korean+Exports_20230314.pdf. 
  2. Lovins, A.B., 2010, "DOD's energy challenge as strategic opportunity", Joint Force Quarterly, 57, 33-42, https://rmi.org/wp-content/uploads/2017/05/RMI_Document_Repository_Public-Reprts_JFQ57_Lovins_unabridged.pdf. 
  3. David S., E., Steven B., S., R.S., B., and Scott H., D., 2009, "Sustain the mission project: Casualty factors for fuel and water resupply convoys", Army environmental policy institute, https://apps.dtic.mil/sti/pdfs/ADB356341.pdf. 
  4. Korea SMEs and Startups Agency (KOSME), 2019, "Renewable energy centered on solar and wind", KOSME Industry analysis reports No. 2019-6, https://www.mss.go.kr/cmm/fms/FileDown.do?atchFileId=FILE_000000001003796&fileSn=1. 
  5. Yoon, Y.M., 2014, "Domestic biomass utilization status and activation plan", World agriculture, 162, 73-97, http://repository.krei.re.kr/handle/2018.oak/20627. 
  6. Zhang, L., Xu, C., and Champagne, P., 2010, "Overview of recent advances in thermo-chemical conversion of biomass", Energy Conv. and Manag., 51(5), 969-982.  https://doi.org/10.1016/j.enconman.2009.11.038
  7. Demirbas, A., 2007, "Combustion systems for biomass fuel", Energ. Source Part A, 29(4), 303-312.  https://doi.org/10.1080/009083190948667
  8. Ong, H.C., Chen, W.H., Farooq, A., Gan, Y.Y, Lee, K.T., and Ashokkumar, V., 2019, Ashokkumar, "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review", Renew. Sust. Energ. Rev., 113, 109266. 
  9. Chen, W.H., Huang, M.Y., Chang, J.S., and Chen, C.Y., 2015, "Torrefaction operation and optimization of microalga residue for energy densification and utilization", Appl. Energy, 154, 622-630.  https://doi.org/10.1016/j.apenergy.2015.05.068
  10. van dar Stelt., M.J.C., Gerhauser, H., Kiel, J.H.A., and Ptasinski, K.J., 2011, "Biomass upgrading by torrefaction for the production of biofuels: A review", Biomass and Bioenergy, 35(9), 3748-3762.  https://doi.org/10.1016/j.biombioe.2011.06.023
  11. Bach, Q.V., and Chen, W.H., 2017, "Pyrolysis characteristics and kinetics of microalge via thermogravimetric analysis (TGA): A state-of-the-art review", Bioresour. Technol., 246, 88-100.  https://doi.org/10.1016/j.biortech.2017.06.087
  12. Jahirul, M.I., Rasul, M.G., Chowdhury, A.A., and Ashwath, N., 2012, "Biofuels production through biomass pyrolysis -A technological review", Energies, 5(12), 4952-5001.  https://doi.org/10.3390/en5124952
  13. Wang, S., Dai, G., Yang, H., and Luo, Z., 2017, "Lignocellulosic biomass pyrolysis mechanism: A sate-of-the-art review", Prog. Energy Combust. Sci., 62, 33-86.  https://doi.org/10.1016/j.pecs.2017.05.004
  14. Yang, J., He, Q., and Yang, L., 2019, "A review on hydrothermal co-liquefaction of biomass", Appl. Energy, 250, 926-945.  https://doi.org/10.1016/j.apenergy.2019.05.033
  15. Chen, W.H., Lin, Y.Y., Liu, H.S., Chen, T.C., Hung, C.H., Chen, C.H., and Ong, H.C., 2019, "A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application", Appl. Energy, 237, 283-291.  https://doi.org/10.1016/j.apenergy.2018.12.084
  16. Wei, J., Gong, Y., Guo, Q., Chen, X., Ding, L., and Yu, G., 2019, "A mechanism investigation of synergy behavior variations during blended char co-gasification of biomass and different rank coals", Renew. Energy, 131, 597-605.  https://doi.org/10.1016/j.renene.2018.07.075
  17. Basu, P., 2006, "Combustion and gasification in fluidized beds", 1st edition, Taylor & Francis Group, USA. 
  18. Cheng, C.L., Lo, Y.C., Lee, K.S., Lee, D.J., Lin, C.Y., and Chang, J.S., 2011, "Biohydrogen production from lignocellulosic feedstock", Bioresour. Technol., 102(18), 8514-8523.  https://doi.org/10.1016/j.biortech.2011.04.059
  19. Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H., and Khanal, S.K., 2015, "Anaerobic digestion of lignocellulosi biomass: Challenges and opportunities", Bioresour. Technol., 178, 178-186.  https://doi.org/10.1016/j.biortech.2014.09.103
  20. Singh, A., and Olsen, S.I., 2011, "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels", Appl. Energy, 88(10), 3548-3555.  https://doi.org/10.1016/j.apenergy.2010.12.012
  21. Cantrell, K.B., Ducey, T., Ro, K.S., and Hunt, P.G., 2008, "Livestock waste-to-bioenergy generation opportunities", Bioresour. Technol., 99(17), 7941-7953.  https://doi.org/10.1016/j.biortech.2008.02.061
  22. Khetkorn, W., Rastogi, R.P., Incharoensakdi, A., Lindblad, P., Madamwar, D., Pandey, A., and Larroche, C., 2017, "Microalgal hydrogen production-A review", Bioresour. Technol., 243, 1194-1206.  https://doi.org/10.1016/j.biortech.2017.07.085
  23. He, S., Fan, X., Luo, S., Katukuri, N.R., and Guo, R., 2017, "Enhanced the energy outcomes from microalgal biomass by the novel biopretreatment", Energy Convers. Manage.,135, 291-296.  https://doi.org/10.1016/j.enconman.2016.12.049
  24. Liu, W., Liu, C., Gogoi, P., and Deng, Y., 2020, "Overview of biomass conversion to electricity and hydrogen and recent developments in low-temperature electrochemical approaches", Engineering, 6(12), 1351-1363.  https://doi.org/10.1016/j.eng.2020.02.021
  25. Mofijur, M., Rasul, M.G., Hyde, J., Azad, A.K. Mamat, R., and Bhuiya, M.M.K., 2016, "Role of biofuel and their binary (diesel-biodisel) and ternary (ethanol-biodiesel-diesel) blends on internal combustion engines emission reduction", Renew. Sust. Energ. Rev., 53, 265-278.  https://doi.org/10.1016/j.rser.2015.08.046
  26. Wachsman, E.D., and Lee, K.T., 2011, "Lowering the temperature of solid oxide fuel cells", Science, 334(6058), 935-939.  https://doi.org/10.1126/science.1204090
  27. Sucipta, M., Kimijima, S., and Suzuki, K., 2007, "Performance analysis of the SOFC-MGT hybrid system with gasified biomass fuel", J. Power Sources, 174(1), 124-135.  https://doi.org/10.1016/j.jpowsour.2007.08.102
  28. Zhao, X., and Zhu, J.Y., 2016, "Efficient conversion of lignin to electricity using a novel direct biomass fuel cell mediated by polyoxometalates at low temperatures", ChemSusChem, 9(2), 197-207.  https://doi.org/10.1002/cssc.201501446
  29. Jiang, C., Ma, J., Corre, G., Jain, S.L., and Irvine, J.T.S., 2017, "Challenges in developing direct carbon fuel cells", Chem. Soc. Rev., 46(10), 2889. 
  30. Giddey, S., Badwal, S.P.S., Kulkarni, A., and Munnings, C., 2012, "A comprehensive review of direct carbon fuel cell technology", Prog. Energy Combust. Sci., 38(3), 360-399.  https://doi.org/10.1016/j.pecs.2012.01.003
  31. Gur, T.M., 2013, "Critical review of carbon conversion in carbon fuel cells", Chem. Rev., 113(8), 6179-6206.  https://doi.org/10.1021/cr400072b
  32. Elleuch, A., Boussetta, A., Halouani, K., and Li, Y., 2013, "Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part II. improvement of cell stability and performance by a three-layer planar configuration", Int. J. Hydrog. Energy, 38(36), 16605-16614.  https://doi.org/10.1016/j.ijhydene.2013.07.061
  33. Palanisamy, G., Jung, H.Y., Sadhasivam, T., Kurkuri, M.D., Kim, S.C., and Roh, S.H., 2019, "A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes", J. Clean Prod., 221, 598-621.  https://doi.org/10.1016/j.jclepro.2019.02.172
  34. Mohan, S.V., Velvizhi, G., Modestra, J.A., and Srikanth, S., 2014, "Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements", Renew. Sustain. Energy Rev., 40, 779-797.  https://doi.org/10.1016/j.rser.2014.07.109
  35. ElMekawy, A., Hegab, H.M., Dominguez-Benetton, X., and Pant, D., 2013, "Internal resistance of microfluidic microbial fuel cell: Chanllenges and potential opportunities", Bioresour. Technol., 142, 672-682.  https://doi.org/10.1016/j.biortech.2013.05.061
  36. Lesnik, K.L., and Liu, H., 2014, "Establishing a core microbiome in acetate-fed microbial fuel cells", Appl. Microbiol. Biotechnol., 98(9), 4187-4196.  https://doi.org/10.1007/s00253-013-5502-9
  37. Liu, W., Mu, M., and Deng, Y., 2014, "High-performance liquid-catalyst fuel cell for direct biomass into electricity conversion", Angew. Chem., 126(49), 13776-13780.  https://doi.org/10.1002/ange.201408226
  38. Liu, C., Zhang, Z., Liu, W., Xu, D., Guo, H., He, G., Li, X., and Deng, Y., 2018, "Flow fuel cell powered by combustible agricultural waste", Clean Energy, 2(1), 20-28.  https://doi.org/10.1093/ce/zky001
  39. Liu, W., Gong, Y., Tricker, A., Wu, G., Liu, C., Chao, Z., and Deng, Y., 2020, "Fundamental study toward improving the performance of a high moisture biomass-fueled redox flow fuel cell", Ind. Eng. Chem. Res., 59(10), 4817-4828.  https://doi.org/10.1021/acs.iecr.9b06982
  40. Zhang, Z., Liu, C., Liu, W., Du, X., Cui, Y., Gong, J., Guo, H., and Deng, Y., 2017, "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell", Energy, 141, 1019-1026.  https://doi.org/10.1016/j.energy.2017.09.143
  41. Ding, Y., Du, B., Zhao, X., Zhu, J.Y., and Liu, D., 2017, "Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw", Bioresour. Technol., 228, 279-289.  https://doi.org/10.1016/j.biortech.2016.12.109
  42. Zu, X., Yang, Z., Sun, L., Lin, W., Yi, G., Zheng, X., Li, W., Deng, Y., and Xiao, J., 2020, "Ferric-ferrous redox couple mediated low temperature symmetric flow fuel cell for direct conversion of biomass residues into electricity", J. Power Sources, 448, 227441. 
  43. Taylor, P.J., 2011, "Review of interests and activities in thermoelectics", RDECOM ARL, https://apps.dtic.mil/sti/pdfs/ADA556889.pdf. 
  44. Brown, S.A., Hand, J.R., Orrell, A.C., Russo, B.J., Solana, A.E., Weimar, M.R., Williamson, J.L., Rowley, S.E., and Nesse, R.J., 2010, "Renewable energy opportunities at fort drum, New York", U.S. Department of Energy, https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-19886.pdf. 
  45. Greenley, H.L., 2019, "Department of defense energy management: Background and issues for congress", Congressional Research Service.