DOI QR코드

DOI QR Code

강유전체를 이용한 음의 정전용량 무접합 이중 게이트 MOSFET의 문턱전압 모델

Analytical Model of Threshold Voltage for Negative Capacitance Junctionless Double Gate MOSFET Using Ferroelectric

  • Hakkee Jung (Department of Electronic Engineering, Kunsan National University)
  • 투고 : 2022.10.05
  • 심사 : 2022.11.04
  • 발행 : 2023.03.01

초록

An analytical threshold voltage model is presented to observe the change in threshold voltage shift ΔVth of a junctionless double gate MOSFET using ferroelectric-metal-SiO2 as a gate oxide film. The negative capacitance transistors using ferroelectric have the characteristics of increasing on-current and lowering off-current. The change in the threshold voltage of the transistor affects the power dissipation. Therefore, the change in the threshold voltage as a function of theferroelectric thickness is analyzed. The presented threshold voltage model is in a good agreement with the results of TCAD. As a results of our analysis using this analytical threshold voltage model, the change in the threshold voltage with respect to the change in the ferroelectric thickness showed that the threshold voltage increased with the increase of the absolute value of charges in the employed ferroelectric. This suggests that it is possible to obtain an optimum ferroelectric thickness at which the threshold voltage shift becomes 0 V by the voltage across the ferroelectric even when the channel length is reduced. It was also found that the ferroelectric thickness increased as the silicon thickness increased when the channel length was less than 30 nm, but the ferroelectric thickness decreased as the silicon thickness increased when the channel length was 30 nm or more in order to satisfy ΔVth=0.

키워드

참고문헌

  1. Z. Wei, G. Jacquemod, Y. Leduc, E. de Foucauld, J. Prouvee, and B. Blampey, Act. Passive Electron. Compon., 2019, 4578501 (2019). [DOI: https://doi.org/10.1155/2019/4578501]
  2. T. J. Chang, T. Y. Wang, C. I. Wang, Z. D. Huang, Y. S. Jiang, C. Y. Chou, W. C. Kao, and M. J. Chen, J. Mater. Chem. C, 9, 8285 (2021). [DOI: https://doi.org/10.1039/D1TC00431J]
  3. S. Jha and S. K. Choudhary, Int. J. Nanopart., 12, 112 (2020). [DOI: https://doi.org/10.1504/IJNP.2020.106002]
  4. N. Thoti and Y. Li, Nanoscale Res. Lett., 17, 53 (2022). [DOI:https://doi.org/10.1186/s11671-022-03690-8]
  5. A. Ganesh, K. Goel, J. S. Mayall, and S. Rewari, Silicon, 14, 4063 (2022). [DOI: https://doi.org/10.1007/s12633-021-01173-6]
  6. V. B. Sreenivasulu and V. Narendar, Silicon, 14, 3823 (2022). [DOI: https://doi.org/10.1007/s12633-021-01145-w]
  7. S. Rollo, D. Rani, W. Olthuis, and C. P. Carcia, Sens. Actuators, B, 303, 127215 (2020). [DOI: https://doi.org/10.1016/j.snb.2019.127215]
  8. J. Park, W. Jang, and C. Shin, Micromachines, 12, 886 (2021). [DOI: https://doi.org/10.3390/mi12080886]
  9. A. Talukdar, A. K. Raibaruah, and K.C.D. Sarma, Procedia Comput. Sci., 171, 1046 (2020). [DOI: https://doi.org/10.1016/j.procs.2020.04.112]
  10. D. Y. Jeon, AIP Adv., 11, 055111 (2021). [DOI: https://doi.org/10.1063/5.0035460]
  11. G. Pananakakis, G. Ghibaudo, and S. Cristoloveanu, Micromachines, 12, 330 (2021). [DOI: https://doi.org/10.3390/mi12030330]
  12. A. K. Saha and S. K. Gupta, J. Appl. Phys., 129, 080901 (2021). [DOI: https://doi.org/10.1063/5.0038971]
  13. M. Hoffmann, M. Gui, S. Slesazeck, R. Fontanini, M. Segatto, D. Esseni, and T. Mikolajick, Adv. Funct. Mater., 32, 2108494 (2022). [DOI: https://doi.org/10.1002/adfm.202108494]
  14. S. Zhang, H. Lui, J. Zhou, Y. Liu, G. Han, and Y. Hao, Nanoscale Res. Lett., 16, 21 (2021). [DOI: https://doi.org/10.1186/s11671-020-03468-w]
  15. R. Deepa, M. P. Devi, N. A. Vignesh, and S. Kanithan, Silicon, 14, 2409 (2022). [DOI: https://doi.org/10.1007/s12633-022-01722-7]
  16. S. B. Rahi, S. Tayal, and A. K. Upadhyay, Microelectron. J., 116, 105242 (2021). [DOI: https://doi.org/10.1016/j.mejo.2021.105242]
  17. H. Lee, Y. Yoon, and C. Shin, IEEE Electron Device Lett., 38, 669 (2017). [DOI: https://doi.org/10.1109/LED.2017.2679102]
  18. Z. Dong and J. Guo, IEEE Trans. Electron Devices, 64, 2927 (2017). [DOI: https://doi.org/10.1109/TED.2017.2706182]
  19. M. Hoffmann, S. Slesazeck, and T. Mikolajick, APL Mater., 9, 020902 (2021). [DOI: https://doi.org/10.1063/5.0032954]
  20. S. Kamaei, A. Saeidi, C. Gastaldi, T. Rosca, L. Capua, M. Cavalieri, and A. M. Ionescu, npj 2D Mater. Appl., 5, 76 (2021). [DOI: https://doi.org/10.1038/s41699-021-00257-6]
  21. E. Paramonova, V. Bystrov, X. Meng, H. Shen, J. Wang, and V. Fridkin, Nanomaterials, 10, 1841 (2020). [DOI: https://doi.org/10.3390/nano10091841]
  22. A. Rassekh, J. M. Sallese, F. Jazaeri, M. Fathipour, and A. M. Ionescu, IEEE J. Electron Devices Soc., 8, 939 (2020). [DOI:https://doi.org/10.1109/JEDS.2020.3020976]
  23. B. Awadhiya, P. N. Kondekar, S. Yadav, and P. Upadhyay, Trans. Electr. Electron. Mater., 22, 267 (2021). [DOI:https://doi.org/10.1007/s42341-020-00230-y]
  24. A. Saeidi, F. Jazaeri, I. Stolichnov, C. C. Enz, and A. M. Ionescu, Sci. Rep., 9, 9105 (2019). [DOI: https://doi.org/10.1038/s41598-019-45628-8]
  25. F. I. Sakib, F. E. Mullick, S. Shahnewaz, S. Islam, and M. Hossain, Semicond. Sci. Technol., 35, 025005 (2020). [DOI:https://doi.org/10.1088/1361-6641/ab5b76]
  26. G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, IEEE Trans. Electron Devices, 65, 867 (2018). [DOI: https://doi.org/10.1109/TED.2018.2794499]
  27. Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang, and T. Tang, Microelectron. J., 42, 515 (2011). [DOI: https://doi.org/10.1016/j.mejo.2010.11.002]
  28. T. K. Chiang, IEEE Trans. Electron Devices, 59, 2284 (2012). [DOI: https://doi.org/10.1109/TED.2012.2202119]
  29. A. Rassekh, F. Jazaeri, and J. M. Sallese, IEEE Trans. Electron Devices, 69, 820 (2022). [DOI: https://doi.org/10.1109/TED.2021.3133193]
  30. Q. Xie, Z. Wang, and Y. Taur, IEEE Trans. Electron Devices, 64, 3511 (2017). [DOI: https://doi.org/10.1109/TED.2017.2716969]
  31. C. Jiang, R. Liang, J. Wang, and J. Xu, Solid-State Electron., 126, 130 (2016). [DOI: https://doi.org/10.1016/j.sse.2016.09.001]
  32. M. Kobayashi and T. Hiramoto, AIP Adv., 6, 025113 (2016). [DOI: https://doi.org/10.1063/1.4942427]