DOI QR코드

DOI QR Code

대면적 태양전지의 분할 수에 따른 모듈 특성 모델링

Module Characteristic Modeling in Terms of the Number of Divisions of Large-Area Solar Cells

  • 김주휘 (성균관대학교 전자전기컴퓨터공학과 ) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과 )
  • Juhwi Kim (Department of Electrical Engineering, Sungkyunkwan University) ;
  • Jaehyeong Lee (Department of Electrical Engineering, Sungkyunkwan University)
  • 투고 : 2022.11.10
  • 심사 : 2022.11.16
  • 발행 : 2023.03.01

초록

In the past, the efficiency of solar cells had been increased in order to increase the efficiency of solar modules. However, in recent years, in order to increase output in the solar industry and market, the competitiveness of solar cells based on large-area solar cells and multi-bus bar has been increasing. Multi-busbar solar module is a technology to reduce power loss by increasing the number and width of the front busbar of the solar cell and reducing the current value delivered by the busbar by half through half-cutting. In the case of the existing M2 (156.75×156.75 mm2) solar cell, even with a half-cut, power loss could be sufficiently reduced, but as the area of the solar cell is enlarged to more than M6 (166×166 mm2), the need for more divisions emerged. This affected not only solar cells but also inverters required for module array configuration. Therefore, in this study, the electrical characteristics of a large-area solar cell and after division were extracted using Griddler simulation. The output characteristics of the module were predicted by applying the solar cell parameters after division to PSPice, and a guideline for the large-area solar module design was presented according to the number of divisions of the large-area solar cell.

키워드

과제정보

본 연구는 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(No.20213030010430, 양면형 모듈 경쟁력 강화를 위한 핵심 기술개발).

참고문헌

  1. H. Wirth, Photovoltaic Module Technology (Walter de Gruyter GmbH & Co KG, 2020). 
  2. A. Tummalieh, P. Andrea, and M. Mittag, Proc. 37th European Specialist Conference and Exhibition (EU PVSEC) (2020) p. 1091. [DOI: https://doi.org/10.4229/EUPVSEC20202020-4AV.2.7] 
  3. J. Muller, D. Hinken, S. Blankemeyer, H. Kohlenberg, U. Sonntag, K. Bothe, T. Dullweber, M. Kontges, and R. Brendel, IEEE J. Photovoltaics., 5, 189 (2015). [DOI: https://doi.org/10.1109/JPHOTOV.2014.2367868] 
  4. A. Joshi, A. Khan, and S. P. Afra, Proc. 2019 Advances in Science and Engineering Technology International Conferences (ASET) (IEEE, Dubai, United Arab Emirates, 2019). [DOI: https://doi.org/10.1109/ICASET.2019.8714488] 
  5. U. Kraling, P. Gebhardt, M. Kaiser, and D. Philipp, Proc. 8th World Conference on Photovoltaic Energy Conversion (2022). 
  6. M. Woodhouse, D. Feldman, V. Ramasamy, B. Smith, T. Silverman, T. M. Barnes, J. Zuboy, and R. Margolis, Research and Development Priorities to Advance Solar Photovoltaic Lifecycle Costs and Performance, No. NREL/TP-7A40-80505, National Renewable Energy Lab. (NREL), Golden, CO (United States), 2021. [DOI: https://doi.org/10.2172/1826113] 
  7. J. Walter, M. Tranitz, M. Volk, C. Ebert, and U. Eitner, Energy Procedia, 55, 380 (2014). [DOI: https://doi.org/10.1016/j.egypro.2014.08.109] 
  8. S. Braun, R. Nissler, C. Ebert, D. Habermann, and G. Hahn, IEEE J. Photovoltaics, 4, 148 (2013). [DOI: https://doi.org/10.1109/JPHOTOV.2013.2286525] 
  9. H. Hanifi, J. Schneider, and J. Bagdahn, Proc. 31st European Photovoltaic Solar Energy Conference and Exhibition (2015) p. 2529. [DOI: https://doi.org/10.4229/EUPVSEC20152015-5CV.2.25] 
  10. S. Guo, J. P. Singh, I. M. Peters, A. G. Aberle, and T. M. Walsh, Int. J. Photoenergy, 2013, 739374 (2013). [DOI: https://doi.org/10.1155/2013/739374] 
  11. T. Fellmeth, A. Born, A. Kimmerle, F. Clement, D. Biro, and R. Preu, Energy Procedia, 8, 115 (2011). [DOI: https://doi.org/10.1016/j.egypro.2011.06.111] 
  12. G. Dingemans, PhD Thesis, Nanolayer Surface Passivation Schemes for Silicon Solar Cells, Technische Universiteit Eindhoven, Eindhoven (2011). [DOI: https://doi.org/10.6100/IR719798] 
  13. D.S.H. Chan and J.C.H. Phang, IEEE Trans. Electron Devices, 34, 286 (1987). [DOI: https://doi.org/10.1109/T-ED.1987.22920] 
  14. G. Cibira and M. Koscova, Appl. Surf. Sci., 312, 74 (2014). [DOI: https://doi.org/10.1016/j.apsusc.2014.05.080] 
  15. J. Bae, H. Jee, Y. Park, and J. Lee, Appl. Sci., 11, 11257 (2021). [DOI: https://doi.org/10.3390/app112311257] 
  16. J. E. Park, W. S. Choi, and D. G. Lim, Energies, 14, 4035 (2021). [DOI: https://doi.org/10.3390/en14134035] 
  17. K. R. McIntosh, M. D. Abbott, M. B. Edwards, R. Evans, and Y. Yao, Proc. 32nd European Photovoltaic Solar Energy Conference and Exhibition (2016) p. 15. [DOI: https://doi.org/10.4229/EUPVSEC20162016-1AO.2.1] 
  18. S. Braun, G. Micard, and G. Hahn, Energy Procedia, 27, 227 (2012). [DOI: https://doi.org/10.1016/j.egypro.2012.07.056]