DOI QR코드

DOI QR Code

폴리올 공정 제어에 의한 탄소기반 나노 Pt 촉매 담지 특성 평가

Electrochemical Catalysts Test for Nano Pt Particles on Carbon Support Synthesized by a Polyol Process Parameter Control

  • 문채린 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 배진우 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 최순목 (한국기술교육대학교 에너지신소재화학공학부)
  • Chae Lin Moon (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Jin Woo Bae (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Soon Mok Choi (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2022.11.28
  • 심사 : 2022.12.29
  • 발행 : 2023.03.01

초록

Nano Pt particles were dispersed on carbon-based supports by a polyol process for a catalyst application in a polymer electrolyte fuel cell. We tried to optimize the effect of pH on the electrostatic forces between the support and the Pt colloids. We investigated the relationship among the surface charges on the carbon support, the solution pH, and the concentration of a glycolate, and the Pt particle size. The produced catalyst with nano Pt particles on the support was evaluated by the long-term cyclic voltammetry (CV) performance test and compared with the results from a commercial catalyst. Our experimental results reveal that the pH-control can modify the particle size distribution and the dispersion of the nano Pt particles. This resulted in a cost-effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells better than a commercial catalyst system.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(중견연구자 사업 No.NRF-2022R1A2C1092054, 미래 유망 융합 파이오니어 사업 NRF2022M3C1A309198811). 또한 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다 (2021RIS-004). 이 논문은 한국기술교육대학교 산학협력단 공동기기분석실의 지원으로 연구되었습니다 (XRD, SEM).

참고문헌

  1. Z. Liu, L. M. Gan, L. Hong, W. Chen, and J. Y. Lee, J. Power Sources, 139, 73 (2005). [DOI: https://doi.org/10.1016/j.jpowsour. 2004.07.012] 
  2. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Science, 272, 1924 (1996). [DOI: https://doi.org/10.1126/science.272.5270.1924] 
  3. J. M. Tatibouet, Applied Catalysis A: General, 148, 213 (1997). [DOI: https://doi.org/10.1016/S0926-860X(96)00236-0] 
  4. Y. M. Shin, S. S. Chee, and J. H. Lee, J. Microelectron. Packag. Soc., 20, 11 (2013). [DOI: https://doi.org/10.6117/KMEPS.2013.20.3.011] 
  5. G. Carotenuto, G. P. Pepe, and L. Nicolais. Eur. Phys. J. B, 16, 11 (2000). [DOI: https://doi.org/10.1007/s100510070243] 
  6. N. Toshima and Y. Wang. Langmuir, 10, 4574 (1994). [DOI: https://doi.org/10.1021/la00024a031] 
  7. J. Yang, K. Hyun, C. Chu, and Y. Kwon, Appl. Chem. Eng., 25, 78 (2014). [DOI: https://doi.org/10.14478/ACE.2013.1111] 
  8. J. Qi, L. Jiang, M. Jing, Q. Tang, and G. Sun, Int. J. Hydrogen Energy, 36, 10490 (2011). [DOI: https://doi.org/10.1016/j.ijhydene.2011.06.022] 
  9. H. S. Kim, S. C. Ryu, Y. W. Lee, and T. H. Shin, Trans. Korean Hydrogen New Energy Soc., 30, 549 (2019). [DOI: https://doi.org/10.7316/KHNES.2019.30.6.549] 
  10. H. J. Park and H. H. Seung, J. Korean Electrochem. Soc., 17, 201 (2014). [DOI: https://doi.org/10.5229/JKES.2014.17.3.201] 
  11. D. Rathod, M. Vijay, N. Islam, R. Kannan, U. Kharul, S. Kurungot, and V. Pillai, J. Appl. Electrochem., 39, 1097 (2009). [DOI: https://doi.org/10.1007/s10800-008-9764-3] 
  12. G. Lunde and T. Barth, Nor. Geol. Tidsskr., 8, 220 (1925). 
  13. A. Pazio, M. De Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, J. Power Sources, 105, 13 (2002). [DOI: https://doi.org/10.1016/S0378-7753(01)00921-1] 
  14. C. Wei, R. R. Rao, J. Peng, B. Huang, I.E.L. Stephens, M. Risch, Z. J. Xu, and Y. Shao-Horn, Adv. Mater., 31, 1806296 (2019). [DOI: https://doi.org/10.1002/adma.201806296]