DOI QR코드

DOI QR Code

Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm

플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘

  • Jin Sung Park (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Jae Won Lee (POMIA (Pohang Institute of Metal Industry Advancement)) ;
  • Sung Jin Kim (Department of Advanced Materials Science and Engineering, Sunchon National University)
  • 박진성 (순천대학교 첨단신소재공학과) ;
  • 이재원 (포항금속소재산업진흥원) ;
  • 김성진 (순천대학교 첨단신소재공학과)
  • Received : 2023.04.17
  • Accepted : 2023.04.21
  • Published : 2023.04.30

Abstract

This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (20015158, Development of processing and fastening technology to minimize damage to the plating layer of highly corrosion-resistant, highly-formed plated steel materials for plant farms.) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). In addition, this research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).

References

  1. G. Li and X. Long, Mechanical behavior and damage of zinc coating for hot dip galvanized steel sheet DP600, Coatings, 10, 202 (2020). Doi: https://doi.org/10.3390/coatings10030202
  2. Z. Wen, G. Yu, S. Li, Y. Li, S. Chen, S. Chen, J. Huang, and J. Yang, Influence of Ni/Zn double coating on the steel on penetration welding-brazing by CMT arc-laser hybrid heat source, Optics & Laser Technology, 134, 106602 (2021). Doi: https://doi.org/10.1016/j.optlastec.2020.106602
  3. J. W. Lee and S. J. Kim, Effects of cooling rates of coating layer on microstructures and corrosion behaviors of Zn-Al-Mg alloy coated steel sheets, Corrosion Science and Technology, 21, 221 (2022). Doi: https://doi.org/10.14773/cst.2022.21.3.221
  4. J. H. Kim, H. S. Bang, and H. S. Bang, Evaluation of weldability for MAG and LASER with galvannealed steel, Journal of Nanoscience and Nanotechnology, 18, 1787 (2018). Doi: https://doi.org/10.1166/jnn.2018.14996
  5. J. W. Lee, S. J. Kim, and M. S. Oh, Influence of alloy content on microstructure and corrosion resistance of Zn-based alloy coated steel product, Korean Journal of Metals and Materials, 58, 169 (2020). Doi: http://dx.doi.org/10.3365/KJMM.2020.58.3.169
  6. T. Shimizu, H. Asada, and S. Morikawa, Performance of hot-dip Zn-6%Al-3%Mg alloy coated steel sheet as automotive body material, Corrosion Science and Technology, 9, 74 (2010). Doi: https://doi.org/10.14773/cst.2010.9.2.074
  7. S. Zhou, C. Shen, S. Han, Q. Tao, and Z. Chen, Effects of Ce and In on microstructure and corrosion properties of Zn-9Al-2.5Mg alloy, Materials Research Express, 6, 086508 (2019). Doi: https://doi.org/10.1088/2053-1591/ab120f
  8. C. Wagner and W. Traud, Uber die Deutung von Korrosionsvorgangen durch Uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.193804407028
  9. M. Stern and A. L. Geary, Electrochemical polarization: I. A theoretical analysis of the Shape of polarization curves, Journal of the electrochemical society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496
  10. M. S. Oh, S. H. Kim, J. S. Kim, J. W. Lee, J. H. Shon, and Y. S. Jin, Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure, Metals and Materials International, 22, 26 (2016). Doi: https://doi.org/10.1007/s12540-015-5411-9
  11. J. W. Lee, B. R. Park, S. Y. Oh, D. W. Yun, J. K. Hwang, M. S. Oh, and S. J. Kim, Mechanistic study on the cut-edge corrosion behaviors of Zn-Al-Mg alloy coated steel sheets in chloride containing environments, Corrosion Science, 160, 108170 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108170
  12. J. W. Lee, S. Y. Oh, B. R. Park, M. S. Oh, and S. J. Kim, Corrosion behaviors of the eutectics structure in Zn-Al-Mg alloy coated steel in chloride containing aqueous environment, Korean Journal of Metals and Materials, 58, 610 (2020). Doi: http://dx.doi.org/10.3365/KJMM.2020.58.9.610
  13. A. Cristoforetti, S. Rossi, F. Deflorian, and M. Fedel, On the limits of the EIS low-frequency impedance modulus as a tool to describe the protection of organic coatings exposed to accelerated aging tests, Coatings, 13, 598 (2023). Doi: https://doi.org/10.3390/coatings13030598
  14. S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579
  15. N. C. Hosking, M. A. Strom, P. H. Shipway, and C. D. Rudd, Corrosion resistance of zinc-magnesium coated steel, Corrosion Science, 49, 3669 (2007). Doi: https://doi.org/10.1016/j.corsci.2007.03.032
  16. J. W. Lee, I. J. Son, and S. J. Kim, Newly designed surface control suing Si addition in trace quantity for Zn2Al-3Mg alloy coated steel sheet with improved corrosion resistance, Applied Surface Science, 598, 153868 (2022). Doi: https://doi.org/10.1016/j.apsusc.2022.153868
  17. D. P. B. Nergis, D. D. B. Nergis, and C. Bejinariu, Galvanic corrosion behavior of different types of coatings used in safety systems manufacturing, Coatings, 11, 1542 (2021). Doi: https://doi.org/10.3390/coatings11121542