DOI QR코드

DOI QR Code

A triplex real-time PCR assay for simultaneous and differential detection of Bordetella bronchiseptica, Mycoplasma cynos, and Mycoplasma canis in respiratory diseased dogs

  • Gyu-Tae Jeon (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University ) ;
  • Jong-Min Kim (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University ) ;
  • Jeong-Hyun Park (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University ) ;
  • Hye-Ryung Kim (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University ) ;
  • Ji-Su Baek (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University ) ;
  • Hyo-Ji Lee (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University ) ;
  • Yeun-Kyung Shin (Foreign Animal Disease Division, Animal and Plant Quarantine Agency) ;
  • Oh-Kyu Kwon (Foreign Animal Disease Division, Animal and Plant Quarantine Agency) ;
  • Hae-Eun Kang (Foreign Animal Disease Division, Animal and Plant Quarantine Agency) ;
  • Soong-Koo Kim (Gyeongsangbuk-do Veterinary Service Laboratory) ;
  • Jung-Hwa Kim (Gyeongsangbuk-do Veterinary Service Laboratory) ;
  • Young-Hwan Kim (Gyeongsangbuk-do Veterinary Service Laboratory) ;
  • Choi-Kyu Park (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University )
  • Received : 2023.02.17
  • Accepted : 2023.03.20
  • Published : 2023.03.30

Abstract

Bordetella (B.) bronchiseptica, Mycoplasma (M.) cynos, and M. canis are the major bacterial pathogens that cause canine infectious respiratory disease complex (CIRDC). In this study, we developed a triplex real-time polymerase chain reaction (tqPCR) assay for the differential detection of these bacteria in a single reaction. The assay specifically amplified three bacterial genes with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra- and inter-assay variations of less than 1%. The diagnostic results of the assay using 94 clinical samples from household dogs with CIRDC clinical signs, the prevalence of B. bronchiseptica, M. cynos, and M. canis was 22.3%, 18.1%, and 20.2%, respectively, indicating that the diagnostic sensitivity was comparable to those of previously reported qPCR assays. The dual infection rate of B. bronchiseptica and M. cynos, B. bronchiseptica and M. canis, and M. cynos and M. canis was 5.3%, 7.4%, and 3.1%, respectively. Moreover, the triple infection rate of B. bronchiseptica, M. cynos, and M. canis was 2.1%. These results indicate that coinfections with B. bronchiseptica, M. cynos, and M. canis have frequently occurred in the Korean dog population. The newly developed tqPCR assay in the present study will be a useful tool for etiological and epidemiological studies on these three CIRDC-associated bacterial pathogens. The prevalence and coinfection data revealed through this study will contribute to expanding knowledge on the epidemiology of CIRDC in the recent Korean dog population.

Keywords

Acknowledgement

This work was supported by the fund (Z-1543085-2022-23-03) by the Research of Animal and Plant Quarantine Agency, Republic of Korea.

References

  1. Barreto ML, Lemos M, de Souza JB, de Brito SG, Alves ABP, dos Santos Machado L, Pereira VLA, Cunha NC, Nascimento ER. 2020, Isolation and identification of Mycoplasma species in dogs. Inter J Environ & Agri Res 6: 18-23.
  2. Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens N, Morisset D. 2014. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol 37: 115-126. https://doi.org/10.1016/j.tifs.2014.03.008
  3. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611-622. https://doi.org/10.1373/clinchem.2008.112797
  4. Canonne AM, Peters I, Roles E, Desquilbet L, Clercx C. 2018. Detection of specific bacterial agents by quantitative PCR assays in the bronchoalveolar lavage fluid of dogs with eosinophilic bronchopneumopathy vs. dogs with chronic bronchitis and healthy dogs. Vet J 232: 52-56. https://doi.org/10.1016/j.tvjl.2017.12.014
  5. Chalker VJ. 2005. Canine mycoplasmas. Res Vet Sci 79: 1-8. https://doi.org/10.1016/j.rvsc.2004.10.002
  6. Chalker VJ, Brownlie J, 2004. Taxonomy of the canine Mollicutes by 16S rRNA gene and 16S/23S rRNA intergenic spacer region sequence comparison. Int J Syst Evol Microbiol 54: 537-542. https://doi.org/10.1099/ijs.0.02869-0
  7. Chalker VJ, Owen WM, Paterson C, Barker E, Brooks H, Rycroft AN, Brownlie J. 2004. Mycoplasmas associated with canine infectious respiratory disease. Microbiology 150: 3491-3497. https://doi.org/10.1099/mic.0.26848-0
  8. Day MJ, Carey S, Clercx C, Kohn B, MarsilIo F, Thiry E, Freyburger L, Schulz B, Walker DJ. 2020. Aetiology of canine infectious respiratory disease complex and prevalence of its pathogens in Europe. J Comp Pathol 176: 86-108. https://doi.org/10.1016/j.jcpa.2020.02.005
  9. Decaro N, Mari V, Larocca V, Losurdo M, Lanave G, Lucente MS, Corrente M, Catella C, Bo S, Elia G, Torre G, Grandolfo E, Martella V, Buonavoglia C. 2016. Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease. Vet Microbiol 192: 21-25. https://doi.org/10.1016/j.vetmic.2016.06.009
  10. Dong J, Tsui WNT, Leng X, Fu J, Lohman M, Anderson J, Hamill V, Lu N, Porter EP, Gray M, Sebhatu T, Brown S, Pogranichniy R, Wang H, Noll L, Bai J. 2022. Development of a three-panel multiplex real-time PCR assay for simultaneous detection of nine canine respiratory pathogens. J Microbiol Methods 199: 106528.
  11. Helps CR, Lait P, Damhuis A, Bjornehammar U, Bolta D, Brovida C, Chabanne L, Egberink H, Ferrand G, Fontbonne A, Pennisi MG, Gruffydd-Jones T, Gunn-Moore D, Hartmann K, Lutz H, Malandain E, Mostl K, Stengel C, Harbour DA, Graat EA. 2005. Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, Chlamydophila felis and Bordetella bronchiseptica in cats: experience from 218 European catteries. Vet Rec 156: 669-673. https://doi.org/10.1136/vr.156.21.669
  12. Hong SH, Kim O. 2012. Molecular identification of Mycoplasma cynos from laboratory beagle dogs with respiratory disease. Lab Anim Res 28: 61-66. https://doi.org/10.5625/lar.2012.28.1.61
  13. Jambhekar A, Robin E, Le Boedec K. 2019. A systematic review and meta-analysis of the association between 4 mycoplasma species and lower respiratory tract disease in dogs. J Vet Intern Med 33: 1880-1891. https://doi.org/10.1111/jvim.15568
  14. Jinnerot T, Malm K, Eriksson E, Wensman JJ. 2015. Development of a TaqMan real-time PCR assay for detection of Bordetella bronchiseptica. Vet Sci 1: 14-20.
  15. Kim HR, Jeon GT, Kim JM, Baek JS, Shin YK, Kwon OK, Kang HE, Cho HS, Cheon DS, Park CK. 2022. Prevalence of Bordetella bronchiseptica, Mycoplasma felis, and Chlamydia felis using a newly developed triplex real-time polymerase chain reaction assay in Korean cat population. Korean J Vet Serv 45: 395-316.
  16. Ko JH, Park MY, Shin BH, Nam YH, Ku KN, Son JI. 2020. A survey of canine infectious diseases in stray dogs in Gyeonggi Province, Korea. Korean J Vet Serv 43: 217-225.
  17. Koh, BRD, Kim HN, Kim HJ, Oh AR, Jung BR, Park JS, Lee JG, Na HM, Kim YH. 2020. A survey of respiratory pathogens in dogs for adoption in Gwangju metropolitan city animal shelter, South Korea. Korean J Vet Serv 43: 67-77.
  18. Kwiecien R, Kopp-Schneider A, Blettner M. 2011. Concordance analysis: part 16 of a series on evaluation of scientific publications. Dtsch Arztebl Int 108: 515-521. https://doi.org/10.3238/arztebl.2011.0515
  19. Lavan R, Knesl O. 2015. Prevalence of canine infectious respiratory pathogens in asymptomatic dogs presented at US animal shelters. J Small Anim Pract 56: 572-576. https://doi.org/10.1111/jsap.12389
  20. Lion A, Secula A, Rancon C, Boulesteix O, Pinard A, Deslis A, Hagglund S, Salem E, Cassard H, Naslund K, Gaudino M, Moreno A, Brocchi E, Delverdier M, Zohari S, Baranowski E, Valarcher JF, Ducatez MF, Meyer G. 2021. Enhanced pathogenesis caused by influenza D virus and mycoplasma bovis coinfection in calves: a disease severity linked with overexpression of IFN-γ as a key player of the enhanced innate immune response in lungs. Microbiol Spectr 9: e0169021.
  21. Maboni G, Seguel M, Lorton A, Berghaus R, Sanchez S. 2019. Canine infectious respiratory disease: New insights into the etiology and epidemiology of associated pathogens. PLoS One 14: e0215817.
  22. Maes D, Sibila M, Kuhnert P, Segales J, Haesebrouck F, Pieters M. 2018. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 65: 110-124. https://doi.org/10.1111/tbed.12677
  23. Matsuu A, Yabuki M, Aoki E, Iwahana M. 2020. Molecular detection of canine respiratory pathogens between 2017 and 2018 in Japan. J Vet Med Sci 82: 690-694. https://doi.org/10.1292/jvms.20-0017
  24. Mitchell JA, Cardwell JM, Leach H, Walker CA, Le Poder S, Decaro N, Rusvai M, Egberink H, Rottier P, Fernandez M, Fragkiadaki E, Shields S, Brownlie J. 2017. European surveillance of emerging pathogens associated with canine infectious respiratory disease. Vet Microbiol 212: 31-38. https://doi.org/10.1016/j.vetmic.2017.10.019
  25. Mochizuki M, Yachi A, Ohsima T, Ohuchi A, Ishida T. 2008. Etiologic study of upper respiratory infections of household dogs. J Vet Med Sci 70: 563-569. https://doi.org/10.1292/jvms.70.563
  26. Priestnall SL, Mitchell JA, Walker CA, Erles K, Brownlie J. 2014. New and emerging pathogens in canine infectious respiratory disease. Vet Pathol 51: 492-504. https://doi.org/10.1177/0300985813511130
  27. Reagan KL, Sykes JE. 2020. Canine infectious respiratory disease. Vet Clin North Am Small Anim Pract 50: 405-418. https://doi.org/10.1016/j.cvsm.2019.10.009
  28. Scholten SS, Tozon N, Koprivec S, Felda K, Florjancic M. 2017. Molecular detection and seroprevalence of mycoplasmas in clinically healthy working dogs. Slovenian Vet Res 54: 155-161. https://doi.org/10.26873/SVR-377-2017
  29. Schulz BS, Kurz S, Weber K, Balzer HJ, Hartmann K. 2014. Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections. Vet J 201: 365-369. https://doi.org/10.1016/j.tvjl.2014.04.019
  30. Sowman HR, Cave NJ, Dunowska M. 2018. A survey of canine respiratory pathogens in New Zealand dogs. N Z Vet J 66: 236-242. https://doi.org/10.1080/00480169.2018.1490214
  31. Spergser J, Rosengarten R. 2007. Identification and differentiation of canine Mycoplasma isolates by 16S23S rDNA PCR-RFLP. Vet Microbiol 125: 170-174. https://doi.org/10.1016/j.vetmic.2007.04.045
  32. Tallmadge RL, Anderson R, Mitchell PK, Forbes ZC, Werner B, Gioia G, Moroni P, Glaser A, Thachil AJ, Goodman LB. 2020. Characterization of a novel Mycoplasma cynos real-time PCR assay. J Vet Diagn Invest 32: 793-801. https://doi.org/10.1177/1040638719890858
  33. Tizolova A, Brun D, Guiso N, Guillot S. 2014. Development of real-time PCR assay for differential detection of Bordetella bronchiseptica and Bordetella parapertussis. Diagn Microbiol Infect Dis 78: 347-351. https://doi.org/10.1016/j.diagmicrobio.2013.12.020
  34. Windsor RC, Johnson LR, Sykes JE, Drazenovich TL, Leutenegger CM, De Cock HE. 2006. Molecular detection of microbes in nasal tissue of dogs with idiopathic lymphoplasmacytic rhinitis. J Vet Intern Med 20: 250-256.  https://doi.org/10.1111/j.1939-1676.2006.tb02854.x