DOI QR코드

DOI QR Code

Investigation of Rheological Properties of Lecithin/D-sorbitol/Water Mixtures

레시틴/디솔비톨/물 혼합물의 유변학적 성질 연구

  • Eun-Ae Chu (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Na-Hyeon Kim (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Min-Seok Kang (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Yeong-Min Lee (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Hee-Young Lee (Department of Chemical Engineering, The Kumoh National Institute of Technology)
  • 추은애 (금오공과대학교 화학공학과) ;
  • 김나현 (금오공과대학교 화학공학과) ;
  • 강민석 (금오공과대학교 화학공학과) ;
  • 이영민 (금오공과대학교 화학공학과) ;
  • 이희영 (금오공과대학교 화학공학과)
  • Received : 2023.03.03
  • Accepted : 2023.03.20
  • Published : 2023.06.10

Abstract

Lecithin can self-assemble into reverse spherical micelles in organic solvents due to its amphiphilic properties. With additives such as D-sorbitol and water, the reverse spherical micelles are transformed into reverse cylindrical micelles by the morphology change of lecithin molecules. In this study, the rheological properties of lecithin/D-sorbitol/water mixtures were investigated. In addition, the small angle X-ray scattering (SAXS) technique was used to examine the shape and size of the formed nanostructures related to their rheological properties. Such mixtures are expected to be used in drug delivery and oleogels because of their high viscosity and viscoelastic behavior.

유기용매 상에서 레시틴은 양친매성 분자의 특성 때문에 구형의 역 마이셀로 자가조립된다. 이러한 레시틴 용액에 D-sorbitol, 물과 같은 첨가제가 들어갈 경우 레시틴의 분자 형태의 변화를 유도하여 역 실린더형 마이셀로의 변환을 이끌게 된다. 이번 연구에서는, 레시틴과 D-sorbitol/물의 혼합물을 이용하여 샘플의 유변학적 변화를 관찰한다. 또한, 이러한 유변학적 변화와 용액 내부의 자가조립된 나노구조체와의 연관성을 확인하기 위해 엑스선 소각 산란분석기 (SAXS)를 이용하여 나노구조체의 형태 및 크기 등을 확인한다. 이러한 혼합물을 이용하여 제조된 점도가 높고 점탄성을 지닌 유체는 약물전달, 식품젤 등의 분야에 활용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

This paper was supported by Kumoh National Institute of Technology (202002330001).

References

  1. J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed., 535-567, Academic Press, CA, USA (1992).
  2. D. F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd ed., 10-37, Wiley-VCH, NY, USA (1999).
  3. D. D. Lasic, Liposomes: from Physics to Applications, 1st ed., 35-51, Elsevier, CA, USA (1993).
  4. J. H. Fendler, Membrane mimetic chemistry: Characterizations and Applications of Micelles, Microemulsions, Monolayers, Bilayers, Vesicles, Host-Guest Systems, and Polyions, 1st ed., 87-110, Wiley, MI, USA (1982).
  5. M. J. Ostro, Liposomes: From Biophysics to Therapeutics, 1st ed., 25-49, Informa Healthcare, NY, USA (1987).
  6. J. H. Lee, V. Agarwal, A. Bose, G. F. Payne, and S. R. Raghavan, Transition from unilamellar to bilamellar vesicles induced by an amphiphilic biopolymer, Phys. Rev. Lett., 96, 048102 (2006).
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed., 15-27, Garland Science, NY, USA (2002).
  8. S. H. Tung, H. Y. Lee, and S. R. Raghavan, A facile route for creating "Reverse" vesicles: Insights into "Reverse" self-assembly in organic liquids, J. Am. Chem. Soc., 130, 8813-8817 (2008). https://doi.org/10.1021/ja801895n
  9. H. Y. Lee, K. K. Diehn, S. W. Ko, S. H. Tung, and S. R. Raghavan, Can simple salts influence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols, Langmuir, 26, 13831-13838 (2010). https://doi.org/10.1021/la1019108
  10. H. Y. Lee, K. Hashizaki, K. Diehn, and S. R. Raghavan, Reverse self-assembly of lipid onions induced by gadolinium and calcium ions, Soft Mater., 9, 200-207 (2013). https://doi.org/10.1039/C2SM26565F
  11. M. G. Kim, E. J. Oh, K. S. Jin, J. W. Chang, and H. Y. Lee, Effect of sugar alcohols on the reverse self-assembly of lecithin in diverse organic solvents, J. Mol. Liq., 330, 115670 (2021).
  12. Y. A. Shchipunov, Lecithin organogel: A micellar system with unique properties, Colloids Surf. A Physicochem. Eng. Asp., 183-185, 541-554 (2001). https://doi.org/10.1016/S0927-7757(01)00511-8
  13. S. H. Tung, Y. E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006). https://doi.org/10.1021/ja0583766
  14. C. R. Lee, Y. K. Lee, E. J. Oh, K. S. Jin, and H. Y. Lee, Effect of aliphatic solvents on the reverse self-assembly of lecithin and calcium chloride mixtures, J. Mol. Liq., 316, 113790 (2020).
  15. Y. G. Jung, C. R. Lee, H. J. Kim, M. G. Kim, K. S. Jin, and H. Y. Lee, Effect of hydrocarbon chain length of aliphatic solvents on the reverse self-assembly of lecithin and monovalent ion mixtures, Colloids Surf. A Physicochem. Eng. Asp., 607, 125441 (2020).
  16. H. Y. Lee, K. K. Diehn, K. Sun, T. Chen, and S. R. Raghavan, Reversible photorheological fluids based on spiropyran-doped reverse micelles, J. Am. Chem. Soc., 133, 8461-8463 (2011). https://doi.org/10.1021/ja202412z
  17. E. J. Oh, D. G. Park, Y. S. Lim, K. S. Jin, and H. Y. Lee, Structural transition of reverse cylindrical micelles to reverse vesicles by mixtures of lecithin and inorganic salts, J. Colloid Interface Sci., 615, 768-777 (2022).
  18. Y. G. Jung, C. R. Lee, H. J. Kim, M. G. Kim, K. S. Jin, and H. Y. Lee, Effect of hydrocarbon chain length of aliphatic solvents on the reverse self-assembly of lecithin and monovalent ion mixtures, Colloids Surf. A Physicochem. Eng. Asp., 607, 125441 (2020).
  19. K. Hashizaki, Y. Sakanishi, S. Yako, H. Tsusaka, M. Imai, H. Taguchi, and Y. Saito, New lecithin organogels from lecithin/polyglycerol/oil systems, J Oleo Sci., 61, 267-275 (2012). https://doi.org/10.5650/jos.61.267
  20. H. Y. Lee, K. K. Diehn, K. Sun, T. Chen, and S. R. Raghavan, Reversible photorheological fluids based on spiropyran-doped reverse micelles, J. Am. Chem. Soc., 133, 8461-8463 (2011).  https://doi.org/10.1021/ja202412z