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Abstract
Deep learning has made great strides in the field of unstructured data such as text, images, and audio. How-

ever, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better
than deep learning. To keep up with the performance of machine learning algorithms with good predictive power,
several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest
deep learning models for tabular data and compare the performances of these models using several datasets. In
addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines
to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning
methods. But for the classification problems, deep learning methods perform better than the machine learning
methods in some cases.
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1. Introduction

A great advance in deep learning has been successfully made with good performance in problems
dealing with unstructured data such as text, image, and audio data. However, in the case of predicting
tabular data, deep learning is not yet performing as well as unstructured data.

Although it is not clear why deep learning methods perform not as well as the latest boosting
methods, we believe that convolutional neural network (CNN) (Krizhevsky et al., 2012) and recurrent
neural network (RNN) (Sherstinsky, 2021) perform well for some specific type of data because of the
following reasons. CNN identifies the characteristics of image data through a convolution layer that
extracts local features of the image and a pooling layer that reduces the dimension. In RNN, the output
of the previous step is used as the input of the current step. So RNN is mainly used for sequential data
such as text or audio data. Meanwhile, tabular data has a structure in the form of a table with rows
and columns. Each row corresponds to each observation and each column corresponds to a variable
or feature. However, there is no deep learning method known to have a structure that can capture the
characteristics of the tabular data.

Currently, the State-of-the-art model in predicting tabular data is often the ensemble model based
on the gradient-boosted decision tree (GBDT) (Friedman, 2001) such as XGBoost (Chen and Guestrin,
2016), CatBoost (Prokhorenkova et al., 2017), LightGBM (Ke et al., 2017). These models give good
performance in both regression and classification problems. Also, tree-based ensemble models give
feature importance value so we can identify which variables are important in prediction. In terms of
predicting tabular data, these GBDT-based models generally outperform deep learning methods. Ac-
cording to the XGBoost and LightGBM official GitHub page (Chen and Guestrin, 2016; Microsoft,
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Figure 1: TabNet encoder architecture.

2020), XGBoost and LightGBM took a top tier in several Kaggle competitions. Also, XGBoost has
been discussed a lot more on Kaggle compared to deep learning (Bansal, 2018).

To compete with machine learning algorithms, many deep learning methods for tabular data are
continuously proposed these days. TabNet (Arik and Pfister, 2020) is a deep neural network model
that reflects the feature selection characteristics of decision trees in a neural network. It uses a masking
structure within the encoder to increase the influence of meaningful variables and reduce the influence
of variables without a significant effect on learning. NODE (Popov et al., 2019) applied the ensem-
ble method of oblivious decision tree to the neural network using differentiable trees with Entmax
function (Peters et al., 2019). Grownet (Badirli et al., 2020) uses a structure of gradient boosting by
connecting multiple shallow trees for neural networks. AutoInt (Song et al., 2019) transforms high-
dimensional data into low-dimensional space by using an embedding layer to reduce data sparsity.
SAINT (Somepalli et al., 2021) uses two different attention layers to learn the interaction of variables
and the interaction of samples.

These new deep learning methods for tabular data are not as widely known as the deep learning
methods of image and text data. We would like to explain the concepts of these new deep learning
methods briefly and compare their performances using various datasets. We will also compare the
performances of these deep learning methods to the latest boosting algorithms since it is well known
that boosting algorithms are known to perform better for tabular data.

This paper is organized as follows. We introduce and explain the deep learning methods for tabular
data in Chapter 2.We will compare the performances of these methods with various datasets in Chapter
3. Chapter 4 is for the conclusion.

2. Deep learning methods for tabular data

2.1. TabNet

In the decision tree, the algorithm selects the splitting point in each depth that minimizes the impurity
of the model to split the feature space. TabNet (Arik and Pfister, 2020) is a deep neural network model
that reflects the feature selection of the decision tree.

In the encoder architecture in TabNet, as shown in Figure 1 (Arik and Pfister, 2020), the model
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Figure 2: Entmax function.

creates a masking layer through a feature transformer and an attentive transformer. The attentive
transformer uses the sparsemax function (Martins and Astudillo, 2016) to create a masking layer for
feature selection. The shape of the sparsemax function is similar to that of softmax, but both ends
of the distribution have higher sparsity than softmax. Therefore, the selected variable is used as it is
for learning, and the unselected variable is not reflected in the model. TabNet selects variables for
each step in the model, and each selection is made sequentially. Prior scales, the parameter in the
attentive transformer, determines the reuse probability of the variable at every step. Also, the model
gives the visualization of feature importance for each step of learning. In this way, it is possible to
interpret which variables are importantly used in each prediction step. Since the model is a form of
instance-wise feature selection that selects meaningful variables for each sample, we can also check
the importance of each sample.

TabNet has encoder-decoder architecture. The goal of this structure is to output the same result as
the input value, so the input value becomes the correct answer for the model. It is possible to impute
missing values in the dataset through the self-supervised learning of the encoder-decoder structure.
Therefore, it doesn’t need to handle the missing value in the data preprocessing step.

2.2. NODE

NODE (neural oblivious decision ensembles) (Popov et al., 2019) has an ensemble structure of differ-
entiable oblivious decision trees. An oblivious decision tree (Kohavi, 1994) is a constrained tree that
uses the same splitting criterion in all nodes of the same depth.

To find a splitting point, the decision tree uses the greedy method that chooses the best splitting
point in each depth of the tree. Since this method is greedy local optimization, end-to-end optimization
is not possible in the decision tree. To create a differentiable tree, NODE uses the entmax function
(Peters et al., 2019) instead of the greedy method. Entmax is a generalization of softmax and sparsmax
functions that has a range from 0 to 1. Depending on the parameter α, the sparsity at both ends of
the distribution varies. Figure 2 (Peters et al., 2019) shows the distribution of the entmax function
depending on α. This entmax function is differentiable, so NODE can use end-to-end optimization
with oblivious decision trees (Lou and Obukhov, 2017).

In the decision tree, the output is one of the response values of 2d terminal nodes. To make the
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Figure 3: GrowNet architecture.

process of calculating the tree output differentiable, NODE determines the tree output through the
linear combination of the response tensor and the weights calculated by using the entmax function.
Response tensor is a learning parameter of NODE, which is initially set to an initial value that follows
a specific distribution and then updated while training the model.

2.3. GrowNet

GBDT trains many shallow trees (weak learners) sequentially and their ensemble result shows good
performance in prediction. GrowNet (Badirli et al., 2020) implements this GBDT structure in a neural
network.

In GrowNet, the shallow network that has one or two hidden layers acts as a weak learner so the
model learns multiple shallow networks. Networks are connected by concatenating the output of the
penultimate layer of one network with the input layer of the next network, so the following network
uses the output of the penultimate layer as input values. Figure 3 (Badirli et al., 2020) shows this
architecture.

The final output of the model is a weighted sum of scores from all shallow neural networks with
boosting rate αk, the weight parameter of each weak learner’s output. In GBDT, the boosting rate
(learning rate) is fixed for all weak learner outputs. In contrast, GrowNet updates the boosting rate
for each network through back-propagation in the corrective step. The back-propagation process also
updates the parameters of each shallow network.

2.4. AutoInt

AutoInt (Song et al., 2019) is a model designed to learn feature interactions between explanatory vari-
ables. This model is created for click-through rate (CTR) prediction, which predicts the probability
of clicking on an item when user information and item information are given. In this case, the dimen-
sion of the explanatory variable is usually very high and variables are mostly sparse, so it is easy to
be overfitted. Therefore, AutoInt uses an embedding layer to express high-dimensional explanatory
variable vectors in low-dimensional continuous space.

Figure 4 (Song et al., 2019) shows the overall architecture of AutoInt. In the embedding layer,
all variables including numeric variables are converted into a specific low-dimensional vector. After
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Figure 4: AutoInt architecture.

that, using a multi-head self-attention mechanism (Vaswani et al., 2017) in the interacting layer, it
finds automatically a combination of variables that are helpful for prediction. At each interacting
layer, the attention mechanism combines the variables, and then a multi-head mechanism evaluates
the variable combinations created. The multi-head self-attention mechanism shows good performance
in modeling complex relationships.

2.5. SAINT

SAINT (Somepalli et al., 2021) is a method to learn both the interaction between columns and sam-
ples. SAINT includes an embedding layer and an attention layer like AutoInt. In AutoInt, the multi-
head self-attention mechanism (Vaswani et al., 2017) calculates attention about variables to learn the
relationship between variables. SAINT also calculates the interaction between variables in the same
way as AutoInt. The next step is multi-head intersample attention which calculates the attention be-
tween samples to express the relationship between samples. Figure 5 (Somepalli et al., 2021) shows
the saint architecture used in the model.

SAINT also has self-supervised contrastive pre-training to improve model performance. Con-
trastive learning is a pretext task that uses data augmentation. This method learns to minimize the
distance between two augmented data from the same sample, and maximize the distance of aug-
mented data from different samples. This method is mainly used to analyze image or text data, but
SAINT can be used for tabular data because it uses cutmix (Yun et al., 2019) and mixup (Zhang et al.,
2017) as augmentation methods. When there is one data point consisting of n variables, cutmix erases
some values of n variables and fills in the blanks with values from another sample. Mixup creates new
data by mixing two data points in a certain ratio.

3. Performance comparison

In this chapter, we compare the deep learning methods for tabular data introduced in Chapter 2 using
various datasets. For all deep learning methods, we use TensorFlow or PyTorch module with Nvidia
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Figure 5: Two attention blocks in SAINT architecture.

GTX 2080Ti GPU.
In addition to the deep learning algorithms, we compare the performance of three GBDT-based

machine learning algorithms. These three GBDT-based models are as follows. XGBoost (Chen and
Guestrin, 2016) is a gradient boosting method with several factors added for effectiveness and scal-
ability. CatBoost (Prokhorenkova et al., 2017) is a model with a method of handling categorical
explanatory variables based on GBDT. LightGBM (Ke et al., 2017) is a fast and efficient algorithm
with elements to reduce computation time.

3.1. Datasets

In this paper, we compare the performances of models using 10 datasets: California housing prices
(Pace et al., 1997, California), New York City airbnb open data (Dgomonov, 2019, airbnb), bike
sharing dataset (Fanaee et al., 2013, bike), Beijing PM2.5 data (Liang et al., 2015, Beijing), Belarus
used cars prices (Pasedko, 2019, Belarus), airlines customer satisfaction (Jana, 2020, airlines), Ger-
man credit data (Hofmann, 1994, German), Online shoppers purchasing intention (Sakar et al., 2018,
online), mobile price classification (Sharma, 2017, mobile), dry bean dataset (Koklu and Ozkan,
2020, dry bean). The first five datasets are regression problems and the other five datasets are classi-
fication problems. Table 1 contains the information of each dataset.

In the case of the classification problem, airlines customer satisfaction, German credit data, and
online shoppers purchasing intention have binary target variables. Mobile price classification has
multiclass target variables with 4 types, and also dry bean dataset has multiclass target variables with
7 types. Figure 6 shows the distribution of the target variable in each dataset. Among the deep learning
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Table 1: Description of experiment datasets

Dataset # of rows # of columns Problem Source
California 19475 10 Regression Kaggle

Airbnb 48895 16 Regression Kaggle
Bike 17389 16 Regression UCI repository

Beijing 43824 13 Regression UCI repository
Belarus 56244 12 Regression Kaggle
Airlines 129881 23 Classification Kaggle
German 1000 20 Classification UCI repository
Online 12330 18 Classification UCI repository
Mobile 2000 21 Classification Kaggle

Dry bean 13611 17 Classification UCI repository

Figure 6: Target variable distribution for classification problems.

methods we use, Grownet and AutoInt do not provide a code for predicting a multiclass classification.
Therefore, the mobile price classification and dry bean dataset compare the results of the models
except for Grownet and AutoInt.

3.2. Preprocessing

Before training the model, datasets have to be transformed into a suitable form for analysis. Therefore,
preprocessing was performed for all datasets. We excluded rows with NA values from the analysis, and
categorical variables were converted into numeric values using one hot encoding except for AutoInt.
In the case of AutoInt, label encoding must be applied to categorical variables to handle categorical
variables within the model. So we only used label encoding for AutoInt.

In addition to the basic preprocessing step, datasets that require additional preprocessing steps
were transformed as follows.
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Table 2: Result of modeling - RMSE

RMSE
California Airbnb Bike Beijing Belarus

TabNet 48179.356 67.817 77.073 49.620 2900.251
NODE 54502.934 71.125 77.091 52.736 4853.268

GrowNet 49668.250 67.286 35.979 41.683 2862.707
AutoInt 50409.035 67.506 39.688 41.757 2849.807
SAINT 48790.454 67.821 36.146 36.176 2852.220

XGBoost 43207.742 65.387 35.615 35.050 2740.192
CatBoost 41875.720 65.621 33.977 38.169 2710.506

LightGBM 41448.663 65.283 35.695 34.744 2708.251

Table 3: Result of modeling - Pseudo R2

Pseudo R2

California Airbnb Bike Beijing Belarus
TabNet 0.762 0.476 0.821 0.710 0.868
NODE 0.700 0.424 0.820 0.677 0.631

GrowNet 0.740 0.485 0.961 0.798 0.872
AutoInt 0.740 0.481 0.952 0.798 0.873
SAINT 0.756 0.476 0.961 0.848 0.872

XGBoost 0.809 0.514 0.962 0.857 0.882
CatBoost 0.820 0.501 0.965 0.831 0.885

LightGBM 0.824 0.515 0.962 0.860 0.885

• California housing prices: Among the target variable median house value, values greater than
500,000 are recorded as 500,001. We judged this to be inaccurate data, so the row with a me-
dian house value of 500,001 was excluded from the analysis.

• New York City airbnb open data: Price, the target variable of airbnb data, is the price per night of
airbnb, and there was data with a price of 0. We considered this as an outlier and excluded data
with a price of 0 from the analysis. Also, the last review variable refers to the date on which the
most recent review was written, but a date format variable cannot be used for analysis. Therefore,
we transform this variable into a variable last review days that counts the number of days from
2019/12/31, the date of data collection.

• Bike sharing dataset: The following columns that are not used for analysis were dropped - instant
(record index), dteday (date), casual (count of casual users: high correlation with target variable),
registered (count of registered users: high correlation with target variable).

• Belarus used cars prices: The make and model variables have 51 and 461 levels respectively. When
we apply one hot encoding to the data including these variables, the data becomes very sparse. So
we excluded make and model variables from the analysis.

3.3. Results

For every dataset, we randomly selected 80% of the data as a train set and 20% as a test set. We
predicted the test set with each trained model, and compared models based on RMSE and Pseudo
R2 for regression problems, accuracy and f1 score for classification problems. We also compared
computation times for all problems. The tuning parameters used in each model and be found in
https://home.ewha.ac.kr/∼josong/DL.TabData
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Table 4: Result of modeling - Computation time

Computation time (sec)
California Airbnb Bike Beijing Belarus

TabNet 926.78 2845.12 1328.78 1777.33 2236.38
NODE 146.00 171.00 376.00 595.00 253.00

GrowNet 285.65 141.01 440.23 843.81 619.46
AutoInt 569.52 67.506 164.28 323.38 467.86
SAINT 265.24 338.28 364.46 855.1 590.17

XGBoost 1.15 18.654 8.05 11.01 4.90
CatBoost 3.86 2.66 2.72 4.06 4.08

LightGBM 3.79 4.81 1.95 2.89 5.01

3.3.1. Regression problems

Tables 2–4 are prediction results for regression problems. As shown in the tables, one of the three
machine learning models had the smallest RMSE and the highest R2 in all datasets. The results of the
machine learning methods did not differ significantly. Computation time was also much faster with
machine learning methods. For all datasets except Beijing, the three machine learning methods had
lower RMSE and higher R2 than all the deep learning methods. In the case of Beijing, the RMSE of
SAINT was lower than the value of CatBoost.

Among the deep learning methods, the model with the best performance depends on the dataset.
For the California dataset, TabNet’s RMSE was the lowest among deep learning models. The differ-
ence between R2 of TabNet and the best model (LightGBM) was 0.062. But the computation time was
more than 200 times faster in LightGBM than in TabNet. For the airbnb and bike dataset, the model
with the lowest RMSE among deep learning methods was GrowNet. In the case of Beijing PM, the
RMSE of SAINT was the lowest among the five deep learning methods, and in Belarus, AutoInt was
the best. R2 of NODE was relatively low compared to other methods. For computation time, AutoInt
was the fastest on four of five datasets. TabNet took much more computation time than other methods
on all datasets.

3.3.2. Classification problems

Tables 5–7 show prediction results for classification problems. For the German and online datasets,
machine learning methods had the highest test accuracy. However, in the other three datasets, one of
the deep learning methods was the best model. In the case of computation time, machine learning
methods were much faster than deep learning methods.

For the airlines dataset, SAINT obtained the highest test accuracy. There was not much difference
in accuracy for the airlines dataset between SAINT, AutoInt, TabNet, and the three machine learning
methods. However, the computation time was very different. TabNet took over an hour, while Light-
GBM trained the model in about 4 seconds. SAINT also obtained the highest accuracy in the dry
bean dataset. In the German dataset, XGBoost and CatBoost had the highest accuracy. The difference
between the accuracy of the best model and SAINT, the lowest accuracy among deep learning models,
was 0.075. For the online dataset, XGBoost and LightGBM obtained the highest accuracy. The test
accuracy of GrowNet and SAINT was higher than that of CatBoost. For NODE, the accuracy was
0.842 but the F1 score was 0 because NODE predicted all test data to the same class. In the case of
the mobile dataset, NODE obtained the highest test accuracy. In addition, the accuracy of TabNet was
higher than that of XGBoost and LightGBM. But the computation time of machine learning was still
much faster than deep learning methods.
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Table 5: Result of modeling - Accuracy

Accuracy
Airlines German Online Mobile Dry bean

TabNet 0.957 0.740 0.862 0.930 0.928
NODE 0.951 0.745 0.842 0.943 0.890

GrowNet 0.943 0.750 0.900 - -
AutoInt 0.959 0.745 0.895 - -
SAINT 0.961 0.720 0.903 0.908 0.933

XGBoost 0.959 0.795 0.908 0.928 0.925
CatBoost 0.960 0.795 0.896 0.935 0.926

LightGBM 0.960 0.780 0.908 0.922 0.929

Table 6: Result of modeling - F1 score

F1 score
Airlines German Online Mobile Dry bean

TabNet 0.962 0.823 0.614 0.926 0.939
NODE 0.955 0.825 0.000 0.940 0.896

GrowNet 0.947 0.808 0.659 - -
AutoInt 0.962 0.831 0.644 - -
SAINT 0.964 0.806 0.670 0.904 0.944

XGBoost 0.962 0.866 0.679 0.924 0.936
CatBoost 0.963 0.861 0.644 0.931 0.937

LightGBM 0.963 0.856 0.678 0.919 0.939

Table 7: Result of modeling - Computation time

Computation time (sec)
Airlines German Online Mobile Dry bean

TabNet 4999.62 167.84 645.81 467.12 649.64
NODE 487 98 12 32 347

GrowNet 311.42 90.91 68.88 - -
AutoInt 436.73 34.96 31.71 - -
SAINT 243.403 46.22 26.99 48.69 258.21

XGBoost 13.55 1.7 2.79 2.88 17.31
CatBoost 12.17 3.21 1.32 1.332 3.81

LightGBM 3.99 0.6 0.54 0.94 3.69

4. Conclusion

Deep learning is well known for its good performance in the field of image and text data. However,
many applications still have tabular data for analysis. So, we liked to know the performance of deep
learning-based methods for tabular data. We introduced deep learning methods designed for analyzing
tabular data and compared the prediction performances of these models using multiple datasets. In
regression problems, machine learning methods are still superior to deep learning methods. However,
in the case of classification problems, deep learning methods achieved higher accuracy than machine
learning methods in three out of five datasets. In the case of computation time, deep learning methods
take much longer time than machine learning methods because deep learning methods have more
complex structures and more parameters in the model.
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