DOI QR코드

DOI QR Code

Cone-beam computed tomographic evaluation of the root canal anatomy of the lower premolars and molars in a Brazilian sub-population

  • Jessica Cecilia Almeida (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo) ;
  • Amanda Pelegrin Candemil (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo) ;
  • Gunther Ricardo Bertolini (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo) ;
  • Aline Evangelista Souza-Gabriel (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo) ;
  • Antonio Miranda Cruz-Filho (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo) ;
  • Manoel Damiao Sousa-Neto (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo) ;
  • Ricardo Gariba Silva (Department of Restorative Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo)
  • Received : 2022.11.22
  • Accepted : 2023.01.11
  • Published : 2023.03.31

Abstract

Purpose: This study evaluated anatomical variations in the root canals of the lower premolars and molars in a Brazilian sub-population using cone-beam computed tomography (CBCT). Materials and Methods: In total, 121 CBCT images of patients were selected from a database. All images contained lower first and second premolars and molars on both sides of the arch, fully developed roots, and no treatment, resorption, or calcifications. In each image, the root canals of the lower premolars and molars were evaluated according to the Vertucci classification in On-Demand 3D software in the multiplanar reconstruction with dynamic navigation. Twenty-five percent of the images were re-assessed to analyze intraobserver confidence with the kappa test. Data were statistically evaluated with linear regression to evaluate the correlations of anatomic variations with age and sex, and the Wilcoxon test to analyze the laterality of variations, with a significance level of 5%. Results: The intraobserver agreement (0.94) was excellent. In general, the root canals of lower premolars and molars showed a higher prevalence of type I than other Vertucci classification types, followed by type V in premolars and type II in molars. When the molar roots were evaluated separately, type II was more frequent in mesial roots and type I in distal roots. Although age showed no correlations with the results, sex and laterality showed correlations with tooth 45 and the lower second premolars, respectively. Conclusion: The lower premolars and molars of a Brazilian sub-population showed a wide range of root canal anatomic variations.

Keywords

Acknowledgement

The authors gratefully acknowledge financial support from CAPES Brazil, Coordination for the Improvement of Higher Education Personnel (33002029032P4); CNPq, National Council for Scientific and Technological Development (156182/2020-6) and FAPESP, The São Paulo Research Foundation (2018/14450-1 and 2021/01623-8).

References

  1. Wong M. Four root canals in a mandibular second premolar. J Endod 1991; 17: 125-6. https://doi.org/10.1016/S0099-2399(06)81744-9
  2. Bartols A, Bormann C, Werner L, Schienle M, Walther W, Dorfer CE. A retrospective assessment of different endodontic treatment protocols. PeerJ 2020; 8: e8495.
  3. Nascimento EH, Gaeta-Araujo H, Andrade MF, Freitas DQ. Prevalence of technical errors and periapical lesions in a sample of endodontically treated teeth: a CBCT analysis. Clin Oral Investig 2019; 22: 2495-503. https://doi.org/10.1007/s00784-018-2344-y
  4. Jang YE, Kim Y, Kim B, Kim SY, Kim HJ. Frequency of nonsingle canals in mandibular premolars and correlations with other anatomical variants: an in vivo cone beam computed tomography study. BMC Oral Health 2019; 19: 272.
  5. Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL, et al. Comparative accuracy of the clearing technique, CBCT and micro-CT method in studying the mesial root canal configuration of mandibular first molars. Int Endod J 2017; 50: 90-6. https://doi.org/10.1111/iej.12593
  6. Neelakantan P, Subbarao C, Subbarao CV, Ravindranath M. Root and canal morphology of mandibular second molars in an Indian population. J Endod 2010; 36: 1319-22. https://doi.org/10.1016/j.joen.2010.04.001
  7. Zhang R, Wang H, Tian YY, Yu X, Hu T, Dummer PM. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular molars in Chinese individuals. Int Endod J 2011; 44: 990-9. https://doi.org/10.1111/j.1365-2591.2011.01904.x
  8. Ahmed HA, Abu-bakr NH, Yahia NA, Ibrahim YE. Root and canal morphology of permanent mandibular molars in a Sudanese population. Int Endod J 2007; 40: 766-71. https://doi.org/10.1111/j.1365-2591.2007.01283.x
  9. Ahmed HM, Versiani MA, De-Deus G, Dummer PM. A new system for classifying root and root canal morphology. Int Endod J 2017; 50: 761-70. https://doi.org/10.1111/iej.12685
  10. Siqueira JF Jr, Perez AR, Marceliano-Alves MF, Provenzano JC, Silva SG, Pires FR, et al. What happens to unprepared root canal walls: a correlative analysis using micro-computed tomography and histology/scanning electron microscopy. Int Endod J 2018; 51: 501-8.
  11. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol 1984; 58: 589-99. https://doi.org/10.1016/0030-4220(84)90085-9
  12. Martins JN, Alkhawas MA, Altaki Z, Bellardini G, Berti L, Boveda C, et al. Worldwide analyses of maxillary first molar second mesiobuccal prevalence: a multicenter cone-beam computed tomographic study. J Endod 2018; 44: 1641-9.e1. https://doi.org/10.1016/j.joen.2018.07.027
  13. Martins JN, Gu Y, Marques D, Francisco H, Carames J. Differences on the root and root canal morphologies between asian and white ethnic groups analyzed by cone-beam computed tomography. J Endod 2018; 44: 1096-104. https://doi.org/10.1016/j.joen.2018.04.001
  14. Martins JN, Ordinola-Zapata R, Marques D, Francisco H, Carames J. Differences in root canal system configuration in human permanent teeth within different age groups. Int Endod J 2018; 51: 931-41. https://doi.org/10.1111/iej.12896
  15. Viana Wanzeler AM, Montagner F, Vieira HT, Dias da Silveira HL, Arus NA, Vizzotto MB. Can cone-beam computed tomography change endodontists' level of confidence in diagnosis and treatment planning? A before and after study. J Endod 2019; 46: 283-8. https://doi.org/10.1016/j.joen.2019.10.021
  16. Roy A, Astekar M, Bansal R, Gurtu A, Kumar M, Agarwal LK. Racial predilection of C-shaped canal configuration in the mandibular second molar. J Conserv Dent 2019; 22: 133-8. https://doi.org/10.4103/JCD.JCD_369_18
  17. Landis JR, Koch GG. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977; 33: 363-74. https://doi.org/10.2307/2529786
  18. Pan JY, Parolia A, Chuah SR, Bhatia S, Mutalik S, Pau A. Root canal morphology of permanent teeth in a Malaysian subpopulation using cone-beam computed tomography. BMC Oral Health 2019; 19: 14.
  19. Patel S, Brown J, Semper M, Abella F, Mannocci F. European Society of Endodontology position statement: use of cone beam computed tomography in Endodontics: European Society of Endodontology (ESE) developed by. Int Endod J 2019; 52: 1675-8. https://doi.org/10.1111/iej.13187
  20. Shetty A, Hegde MN, Tahiliani D, Shetty H, Bhat GT, Shetty S. A three-dimensional study of variations in root canal morphology using cone-beam computed tomography of mandibular premolars in a South Indian population. J Clin Diagn Res 2014;8: ZC22-4. https://doi.org/10.7860/JCDR/2014/8674.4707
  21. Tassoker M, Sener S. Analysis of the root canal configuration and C-shaped canal frequency of mandibular second molars: a cone beam computed tomography study. Folia Morphol(Warsz) 2018; 77: 752-7.
  22. Pang KC, Raja KK, Nambiar P. A comparative study on mandibular premolar root canal morphology employing cone-beam computed tomography and microcomputed tomography imaging. J Conserv Dent 2022; 25: 173-8. https://doi.org/10.4103/jcd.jcd_606_21
  23. Sousa TO, Haiter-Neto F, Nascimento EH, Peroni LV, Freitas DQ, Hassan B. Diagnostic accuracy of periapical radiography and cone-beam computed tomography in identifying root canal configuration of human premolars. J Endod 2017; 43: 1176-9. https://doi.org/10.1016/j.joen.2017.02.021
  24. Mashyakhy M, Gambarini G. Root and root canal morphology differences between genders: a comprehensive in-vivo CBCT study in a Saudi population. Acta Stomatol Croat 2019; 53: 213-46. https://doi.org/10.15644/asc53/3/3
  25. Wu YC, Su CC, Tsai YC, Cheng WC, Chung MP, Chiang HS, et al. Complicated root canal configuration of mandibular first premolars is correlated with the presence of the distolingual root in mandibular first molars: a cone-beam computed tomographic study in Taiwanese individuals. J Endod 2017; 43: 1064-71. https://doi.org/10.1016/j.joen.2017.01.027
  26. Thomas RP, Moule AJ, Bryant R. Root canal morphology of maxillary permanent first molar teeth at various ages. Int Endod J 1993; 26: 257-67. https://doi.org/10.1111/j.1365-2591.1993.tb00570.x
  27. Gani OA, Boiero CF, Correa C, Masin I, Machado R, Silva EJ, et al. Morphological changes related to age in mesial root canals of permanent mandibular first molars. Acta Odontol Latinoam 2014; 27: 105-9.
  28. Kim Y, Lee SJ, Woo J. Morphology of maxillary first and second molars analyzed by cone-beam computed tomography in a Korean population: variations in the number of roots and canals and the incidence of fusion. J Endod 2012; 38: 1063-8. https://doi.org/10.1016/j.joen.2012.04.025
  29. Reis AG, Grazziotin-Soares R, Barletta FB, Fontanella VR, Mahl CR. Second canal in mesiobuccal root of maxillary molars is correlated with root third and patient age: a cone-beam computed tomographic study. J Endod 2013; 39: 588-92. https://doi.org/10.1016/j.joen.2013.01.003
  30. Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B, et al. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol 2018; 48: 308-16. https://doi.org/10.1007/s00247-017-4012-9
  31. Kuhnisch J, Anttonen V, Duggal MS, Spyridonos ML, Rajasekharan S, Sobczak M, et al. Best clinical practice guidance for prescribing dental radiographs in children and adolescents: an EAPD policy document. Eur Arch Paediatr Dent 2020; 21: 375-86.  https://doi.org/10.1007/s40368-019-00493-x