DOI QR코드

DOI QR Code

Interfuel Substitution and Carbon Dioxide Emission in the Transportation Sector: Roles of Biodiesel Blended Fuels

수송부문의 연료 간 대체와 이산화탄소 배출: 바이오디젤 혼소 효과를 중심으로

  • 강효녕 (한국해양수산개발원) ;
  • 서동희 (고려대학교 식품자원경제학과)
  • Received : 2022.11.07
  • Accepted : 2023.02.08
  • Published : 2023.03.31

Abstract

This paper investigates how interfuel substitution affects carbon dioxide (CO2) emissions with a focus on the use of biodiesel blended fuels. The results show that the Divisia elasticity of diesel demand is the greatest because the transportation sector relies heavily on diesel. Also, while the own-price elasticity of each fuel demand is negative, the results reveal that diesel demand is more inelastic than the demand for gasoline and LPG. Moreover, gasoline is a substitute for diesel and electricity, and diesel is a substitute for LPG and a complement for electricity. Regarding the effects on carbon dioxide emissions, this paper computes the potential CO2 emissions associated with interfuel substitution using the coefficients of CO2 emissions. The results show that using biodiesel blended fuels contributes to reducing CO2 emissions, but it appears that the price-induced interfuel substitution is a main factor affecting CO2 emissions.

본 연구는 차분연료배분모형을 이용하여 수송부문에서의 연료 간 대체성을 추정하고, 연료 간 대체에 따른 이산화탄소 배출효과를 살펴본다. 분석결과를 정리하면, 첫째, 수송부문은 경유에 대한 의존도가 매우 높아 디비지아 탄력성이 가장 큰 것으로 나타났다. 둘째, 연료별 자기가격탄력성은 모두 음(-)의 값을 보였으며, 경유의 자체가격탄력성이 휘발유와 LPG에 비해 상대적으로 낮은 것으로 나타났다. 셋째, 휘발유와 경유, 휘발유와 전기, 경유와 LPG는 대체관계를 보였으며, 경유와 전기는 보완관계를 갖는 것으로 나타났다. 넷째, 연료별 대체성과 배출계수를 이용한 결과, 바이오디젤을 경유에 혼합하는 경우 이산화탄소 감축 효과가 있으나, 주로 연료별 가격 변화에 따른 연료 간 대체가 이산화탄소 배출을 결정짓는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 고려대학교 특별연구비에 의하여 수행되었음.

References

  1. 에너지경제연구원, 「에너지통계연보」, 국가에너지통계종합정보시스템, 2021.
  2. 「에너지법 시행규칙」 제5조[별표], 국가법령정보센터, 2013.03.23.
  3. 온실가스종합정보센터, 「2021년 국가온실가스 인벤토리」, 온실가스종합정보센터, 2022.
  4. 조철근.정준환, 「국내 수송용 연료 수요의 가격 및 교차탄력성 추정에 관한 연구」, 에너지경제연구원, 2017.
  5. Alves, D. C., and R. D. L. da Silveira Bueno, "Short-run, long-run and cross elasticities of gasoline demand in Brazil," Energy Economics, Vol. 25, No. 2, 2003, pp. 191~199. https://doi.org/10.1016/S0140-9883(02)00108-1
  6. Anderson, S. T., "The Demand for Ethanol as a Gasoline Substitute," Journal of Environmental Economics and Management, Vol. 63, No. 2, 2012, pp. 151~168. https://doi.org/10.1016/j.jeem.2011.08.002
  7. Barten, A. P., "Consumer demand functions under conditions of almost additive preferences," Econometrica, Vol. 32, 1964, pp. 1~38. https://doi.org/10.2307/1913731
  8. Bjorner, T. B., and H. H. Jensen, "Interfuel substitution within industrial companies: an analysis based on panel data at company level," The Energy Journal, Vol. 23, 2002, pp. 27~50. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol23-No2-1
  9. Cardoso, L. C., M. V. Bittencourt, W. H. Litt, and E. G. Irwin, "Biofuels policies and fuel demand elasticities in Brazil," Energy Policy, Vol. 128, 2019, pp. 296~305. https://doi.org/10.1016/j.enpol.2018.12.035
  10. Clements, K. W., and G. Gao, "The Rotterdam demand model half a century on," Economic Modelling, Vol. 49, 2015, pp. 91~103. https://doi.org/10.1016/j.econmod.2015.03.019
  11. De Freitas, L. C., and S. Kaneko, "Ethanol demand under the flex-fuel technology regime in Brazil," Energy Economics, Vol. 33, No. 6, 2011, pp. 1146~1154. https://doi.org/10.1016/j.eneco.2011.03.011
  12. Fuss, M. A., "The demand for energy in Canadian manufacturing: An example of the estimation of production structures with many inputs," Journal of Econometrics, Vol. 5, No. 1, 1977, pp. 89~116. https://doi.org/10.1016/0304-4076(77)90036-7
  13. Halvorsen, R., "Energy substitution in U.S. manufacturing," The Review of Economics and Statistics, Vol. 59, 1977, pp. 381~388. https://doi.org/10.2307/1928702
  14. Hochman, G., and G. R. Timilsina, "Fuel efficiency versus fuel substitution in the transport sector," Policy Research Working Paper, 2017, p. 8070.
  15. Hossain, A. N., and A. Serletis, "Biofuel substitution in the US transportation sector," The Journal of Economic Asymmetries, Vol. 22, 2020, e00161.
  16. IPCC, 2006 IPCC Guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Japan, 2006.
  17. Jones, C. T., "A dynamic analysis of interfuel substitution in U.S. industrial energy demand," Journal of Business and Economic Statistics, Vol. 13, 1995, pp. 459~465. https://doi.org/10.2307/1392391
  18. Jones, C. T., "The role of biomass in US industrial interfuel substitution," Energy Policy, Vol. 69, 2014, pp. 122~126. https://doi.org/10.1016/j.enpol.2014.02.038
  19. Macedo, I. C., J. E. Seabra, and J. E. Silva, "Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020," Biomass and Bioenergy, Vol. 32, No. 7, 2008. pp. 582~595. https://doi.org/10.1016/j.biombioe.2007.12.006
  20. Pindyck, R. S., "Interfuel substitution and the industrial demand for energy: an international comparison," The Review of Economics and Statistics, 1979a, pp. 169~179.
  21. Pindyck, R. S., The structure of world energy demand. MIT Press Books, 1979b.
  22. Santos, G. F., "Fuel demand in Brazil in a dynamic panel data approach," Energy Economics, Vol. 36, 2013, pp. 229~240. https://doi.org/10.1016/j.eneco.2012.08.012
  23. Serletis, A., G. R. Timilsina, and O. Vasetsky, "International evidence on sectoral interfuel substitution," The Energy Journal, Vol. 31, No. 4, 2010, pp. 1~29. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol31-No4-1
  24. Solarin, S. A., and M. O. Bello, "Interfuel substitution, biomass consumption, economic growth, and sustainable development: evidence from Brazil," Journal of Cleaner Production, Vol. 211, 2019, pp. 1357~1366. https://doi.org/10.1016/j.jclepro.2018.11.268
  25. Stern, D. I., "Interfuel substitution: a meta-analysis," Journal of Economic Surveys, 2012, Vol. 26, pp. 307~331. https://doi.org/10.1111/j.1467-6419.2010.00646.x
  26. Suh, D. H., "Interfuel substitution and biomass use in the US industrial sector: a differential approach," Energy, Vol. 102, 2016, pp. 24~30. https://doi.org/10.1016/j.energy.2016.02.012
  27. Suh, D. H., "Interfuel substitution effects of biofuel use on carbon dioxide emissions: evidence from the transportation sector," Applied Economics, Vol. 51, No. 31, 2019, pp. 3413~3422. https://doi.org/10.1080/00036846.2019.1581906
  28. Szklo, A., R. Schaeffer, and F. Delgado, "Can one say ethanol is a real threat to gasoline?" Energy Policy, Vol. 35, No. 11, 2007, pp. 5411~5421. https://doi.org/10.1016/j.enpol.2007.07.017
  29. Theil, H., "The information approach to demand analysis," Econometrica, Vol. 33, 1965, pp. 67~87. https://doi.org/10.2307/1911889
  30. Xie, C., and A. D. Hawkes, "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Vol. 88, 2015, pp. 260~267. https://doi.org/10.1016/j.energy.2015.05.034