DOI QR코드

DOI QR Code

Heterologous Expression of the Hot Pepper ABA 8'-Hydroxylase in Escherichia coli for Phaseic Acid Production

  • Hyun Min Kim (School of Biological Sciences and Technology, Chonnam National University) ;
  • Young Hee Joung (School of Biological Sciences and Technology, Chonnam National University)
  • Received : 2023.01.06
  • Accepted : 2023.01.25
  • Published : 2023.03.28

Abstract

The CYP707A family genes encoding ABA 8'-hydroxylase catabolize abscisic acid (ABA), a plant stress hormone that plays an important role in stress condition, such as drought, heat, cold and salinity. Phaseic acid (PA) is a catabolic product of ABA. Recent studies have shown that PA is important for the physiological functions in plants. It is also a neuroprotective molecule that protects against ischemic brain injury in mice. To obtain enzymes for the PA production, four CaCYP707A genes (CaCYP707A1, CaCYP707A2, CaCYP707A3 and CaCYP707A4) were isolated from hot pepper. They were heterologously expressed in Escherichia coli. Among them, CaCYP707A2 showed significantly higher expression levels in both the membrane fraction and the soluble fraction. Preferred redox partners were investigated to improve the efficiency of CaCYP707A2's catalytic reaction, and NADPH-cytochrome P450 reductase (CPR) from hot pepper (CaCPR) was preferred over other redox partners (i.e., rat CPR and ferredoxin reductase/ferredoxin). The production of 8'-hydroxy ABA and PA by ABA hydroxylation activity was confirmed in CaCYP707A2 from both membrane and soluble fractions. Therefore, CaCYP707A2 is the first identified plant CYP protein that is expressed a soluble form in cytosolic fraction having stable activity. Taken together, we propose a new CYP707A protein with industrial applications for PA production without additional modifications in E. coli heterologous expression.

Keywords

Acknowledgement

This work was supported by a grant from the New Breeding Technologies Development Program (Project No.PJ01654401) through the Rural Development Administration (RDA), Republic of Korea.

References

  1. Guengerich FP. 2001. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14: 611-650. https://doi.org/10.1021/tx0002583
  2. Zhang X, Li S. 2017. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34: 1061-1089. https://doi.org/10.1039/C7NP00028F
  3. Coon MJ. 2005. Cytochrome P450: nature's most versatile biological catalyst. Annu. Rev. Pharmacol. Toxicol. 45: 1-25. https://doi.org/10.1146/annurev.pharmtox.45.120403.100030
  4. Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. 2020. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem. 295: 833-849. https://doi.org/10.1016/S0021-9258(17)49939-X
  5. Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. Plant J. 66: 194-211. https://doi.org/10.1111/j.1365-313X.2011.04529.x
  6. Werck-Reichhart D, Hehn A, Didierjean L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5: 116-123. https://doi.org/10.1016/S1360-1385(00)01567-3
  7. Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PVV, Jugulam M. 2020. Role of Cytochrome P450 enzymes in plant stress response. Antioxidants (Basel). 9: 454.
  8. Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. 2014. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr. Opin. Plant Biol. 19: 27-34. https://doi.org/10.1016/j.pbi.2014.03.004
  9. Urlacher VB, Girhard M. 2019. Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends Biotechnol. 37: 882-897. https://doi.org/10.1016/j.tibtech.2019.01.001
  10. Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, et al. 2014. Producing aglycons of ginsenosides in bakers' yeast. Sci. Rep. 4: 3698.
  11. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. 2004. The arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23: 1647-1656. https://doi.org/10.1038/sj.emboj.7600121
  12. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, et al. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front. Plant Sci. 8: 161.
  13. Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. 2020. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62: 25-54. https://doi.org/10.1111/jipb.12899
  14. Zhang Y, Wang X, Luo Y, Zhang L, Yao Y, Han L, et al. 2020. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J. 8: 480-491. https://doi.org/10.1016/j.cj.2019.08.006
  15. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, et al. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 134: 1439-1449. https://doi.org/10.1104/pp.103.037614
  16. Weng JK, Ye M, Li B, Noel JP. 2016. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166: 881-893. https://doi.org/10.1016/j.cell.2016.06.027
  17. Hou ST, Jiang SX, Zaharia LI, Han X, Benson CL, Slinn J, et al. 2016. Phaseic acid, an endogenous and reversible inhibitor of glutamate receptors in mouse brain. J. Biol. Chem. 291: 27007-27022. https://doi.org/10.1074/jbc.M116.756429
  18. Munro AW, Girvan HM, McLean KJ. 2007. Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat. Prod. Rep. 24: 585-609. https://doi.org/10.1039/B604190F
  19. Gillam EMJ. 2008. Engineering cytochrome P450 enzymes. Chem. Res. Toxicol. 21: 220-231. https://doi.org/10.1021/tx7002849
  20. Hanna IH, Teiber JF, Kokones KL, Hollenberg PF. 1998. Role of the alanine at position 363 of cytochrome P450 2B2 in influencing the NADPH-and hydroperoxide-supported activities. Arch. Biochem. Biophys. 350: 324-332. https://doi.org/10.1006/abbi.1997.0534
  21. Lee GY, Kim HM, Ma SH, Park SH, Joung YH, Yun CH. 2014. Heterologous expression and functional characterization of the NADPH-cytochrome P450 reductase from Capsicum annuum. Plant Physiol. Biochem. 82: 116-122. https://doi.org/10.1016/j.plaphy.2014.05.010
  22. Kim HM, Park SH, Ma SH, Park SY, Yun CH, Jang G, et al. 2020. Promoted ABA hydroxylation by Capsicum annuum CYP707As overexpression suppresses pollen maturation in Nicotiana tabacum. Front. Plant Sci. 11: 583767.
  23. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589. https://doi.org/10.1038/s41586-021-03819-2
  25. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes I. evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378. https://doi.org/10.1016/S0021-9258(20)82244-3
  26. Natilie A. Hosea GPM, and F. Peter Guengerich. 2000. Elucidation of distinct ligand binding sites for Cytochrome P450 3A4. Biochemistry 39: 5929-5939. https://doi.org/10.1021/bi992765t
  27. Kim DH, Kim KH, Isin EM, Guengerich FP, Chae HZ, Ahn T, et al. 2008. Heterologous expression and characterization of wild-type human cytochrome P450 1A2 without conventional N-terminal modification in Escherichia coli. Protein Expr. Purif. 57: 188-200. https://doi.org/10.1016/j.pep.2007.10.010
  28. Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ. 1998. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol. 118: 849-860. https://doi.org/10.1104/pp.118.3.849
  29. Zelasko S, Palaria A, Das A. 2013. Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems. Protein Expr. Purif. 92: 77-87. https://doi.org/10.1016/j.pep.2013.07.017
  30. Omura T. 2005. Heme-thiolate proteins. Biochem. Biophys. Res. Commun. 338: 404-409. https://doi.org/10.1016/j.bbrc.2005.08.267
  31. Guengerich FP. 2002. Rate-limiting steps in cytochrome P450 catalysis.
  32. Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, et al. 2007. Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J. Biol. Chem. 282: 17486-17500. https://doi.org/10.1074/jbc.M700863200
  33. Zhang W, Du L, Li F, Zhang X, Qu Z, Han L, et al. 2018. Mechanistic insights into interactions between bacterial class I P450 enzymes and redox partners. ACS Catal. 8: 9992-10003. https://doi.org/10.1021/acscatal.8b02913
  34. Morant M, Bak S, Moller BL, Werck-Reichhart D. 2003. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr. Opin. Biotechnol. 14: 151-162. https://doi.org/10.1016/S0958-1669(03)00024-7
  35. Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, et al. 2022. From plant to yeast-advances in biosynthesis of artemisinin. Molecules27: 6888.
  36. Jensen K, Moller BL. 2010. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry 71: 132-141. https://doi.org/10.1016/j.phytochem.2009.10.017
  37. Kern F, Dier TK, Khatri Y, Ewen KM, Jacquot JP, Volmer DA, et al. 2015. Highly efficient CYP167A1 (EpoK) dependent epothilone B formation and production of 7-ketone epothilone D as a new epothilone derivative. Sci. Rep. 5: 14881.
  38. Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H. 1987. A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA 6: 189-197. https://doi.org/10.1089/dna.1987.6.189
  39. Yim SK, Kim DH, Jung HC, Pan JG, Kang HS, Ahn T, et al. 2010. Surface display of heme- and diflavin-containing cytochrome P450 BM3 in Escherichia coli: a whole cell biocatalyst for oxidation. J. Microbiol. Biotechnol. 20: 712-717. https://doi.org/10.4014/jmb.0910.10043
  40. Pernecky SJ, Larson JR, Philpot RM, Coon MJ. 1993. Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: influence of NH2-terminal region on localization in cytosol and membranes. Proc. Natl. Acad. Sci. USA 90: 2651-2655. https://doi.org/10.1073/pnas.90.7.2651
  41. Kagawa N, Hori H, Waterman MR, Yoshioka S. 2004. Characterization of stable human aromatase expressed in E. coli. Steroids 69: 235-243. https://doi.org/10.1016/j.steroids.2004.01.002
  42. Mustafa G, Nandekar PP, Camp TJ, Bruce NJ, Gregory MC, Sligar SG, et al. 2019. Influence of transmembrane helix mutations on Cytochrome P450-membrane interactions and function. Biophys. J. 116: 419-432. https://doi.org/10.1016/j.bpj.2018.12.014