DOI QR코드

DOI QR Code

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan (Department of Integrative Chinese and Western Medicine Anorectal Surgery, Yichun People's Hospital) ;
  • Zhou Long (Deparment of Anorectal Surgery, Jingmen No.1 People's Hospital)
  • Received : 2022.06.17
  • Accepted : 2022.11.03
  • Published : 2023.03.28

Abstract

LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

Keywords

References

  1. McLaughlin C, Kim NK, Bandyopadhyay D, Deng X, Kaplan B, Matin K, et al. 2019. Adjuvant radiation therapy for T4 non-rectal colon adenocarcinoma provides a cause-specific survival advantage: A SEER database analysis. Radiother. Oncol. 133: 50-53. https://doi.org/10.1016/j.radonc.2018.11.026
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394-424. https://doi.org/10.3322/caac.21492
  3. Wei Z, Xu A, Han W, Chen Z. 2018. [Analysis of risk factors on vascular invasion in patients with early gastric cancer]. Zhonghua Wei Chang Wai Ke Za Zhi 21: 803-807.
  4. Liu J, Liu F, Li X, Song X, Zhou L, Jie J. 2017. Screening key genes and miRNAs in early-stage colon adenocarcinoma by RNAsequencing. Tumour Biol. 39: 1010428317714899.
  5. Lieberman DA, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, Levin TR. 2012. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 143: 844-857. https://doi.org/10.1053/j.gastro.2012.06.001
  6. Yan Y, Liu H, Mao K, Zhang M, Zhou Q, Yu W, et al. 2019. Novel nomograms to predict lymph node metastasis and liver metastasis in patients with early colon carcinoma. J. Transl. Med. 17: 193.
  7. Tang Q, Hann SS. 2018. HOTAIR: An oncogenic long non-coding RNA in human cancer. Cell. Physiol. Biochem. 47: 893-913. https://doi.org/10.1159/000490131
  8. Kopp F, Mendell JT. 2018. Functional classification and experimental dissection of long noncoding RNAs. Cell 172: 393-407. https://doi.org/10.1016/j.cell.2018.01.011
  9. Peng WX, Koirala P, Mo YY. 2017. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36: 5661-5667. https://doi.org/10.1038/onc.2017.184
  10. Bhan A, Soleimani M, Mandal SS. 2017. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77: 3965-3981. https://doi.org/10.1158/0008-5472.CAN-16-2634
  11. Ma Y, Zhang J, Wen L, Lin A. 2018. Membrane-lipid associated lncRNA: A new regulator in cancer signaling. Cancer Lett. 419: 27-29. https://doi.org/10.1016/j.canlet.2018.01.008
  12. Li Q, Lei C, Lu C, Wang J, Gao M, Gao W. 2019. LINC01232 exerts oncogenic activities in pancreatic adenocarcinoma via regulation of TM9SF2. Cell Death Dis. 10: 698.
  13. Meng LD, Shi GD, Ge WL, Huang XM, Chen Q, Yuan H, et al. 2020. Linc01232 promotes the metastasis of pancreatic cancer by suppressing the ubiquitin-mediated degradation of HNRNPA2B1 and activating the A-Raf-induced MAPK/ERK signaling pathway. Cancer Lett. 494: 107-120. https://doi.org/10.1016/j.canlet.2020.08.001
  14. Chen L, Zhou Y, Li H. 2018. LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res. 257: 25-32. https://doi.org/10.1016/j.virusres.2018.08.018
  15. Huang Y. 2018. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J. Cell. Mol. Med. 22: 5768-5775. https://doi.org/10.1111/jcmm.13866
  16. Zhao M, Cui H, Zhao B, Li M, Man H. 2020. Long intergenic non-coding RNA LINC01232 contributes to esophageal squamous cell carcinoma progression by sequestering microRNA-654-3p and consequently promoting hepatoma-derived growth factor expression. Int. J. Mol. Med. 46: 2007-2018. https://doi.org/10.3892/ijmm.2020.4750
  17. Shang A, Wang W, Gu C, Chen W, Lu W, Sun Z, et al. 2020. Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging 12: 8301-8320. https://doi.org/10.18632/aging.103139
  18. Qi X, Lin Y, Liu X, Chen J, Shen B. 2020. Biomarker discovery for the carcinogenic heterogeneity between colon and rectal cancers based on lncRNA-associated ceRNA network analysis. Front. Oncol. 10: 535985.
  19. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif.). 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  20. Chen S, Shen X. 2020. Long noncoding RNAs: functions and mechanisms in colon cancer. Mol. Cancer 19: 167.
  21. Mizerska-Kowalska M, Bojarska-Junak A, Jakubowicz-Gil J, Kandefer-Szerszen M. 2016. Neutral endopeptidase (NEP) is differentially involved in biological activities and cell signaling of colon cancer cell lines derived from various stages of tumor development. Tumour Biol. 37: 13355-13368. https://doi.org/10.1007/s13277-016-5248-y
  22. Rokavec M, Horst D, Hermeking H. 2017. Cellular model of colon cancer progression reveals signatures of mRNAs, miRNA, lncRNAs, and epigenetic modifications associated with metastasis. Cancer Res. 77: 1854-1867. https://doi.org/10.1158/0008-5472.CAN-16-3236
  23. Wang SY, Li JY, Xu JH, Xia ZS, Cheng D, Zhong W, et al. 2019. Butyrate suppresses abnormal proliferation in colonic epithelial cells under diabetic state by targeting HMGB1. J. Pharmacol. Sci. 139: 266-274. https://doi.org/10.1016/j.jphs.2018.07.012
  24. Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. 2014. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr. Drug Targets 15: 80-89. https://doi.org/10.2174/1389450114666140106101412
  25. Wang XW, Harris CC. 1997. p53 tumor-suppressor gene: clues to molecular carcinogenesis. J. Cell. Physiol. 173: 247-255. https://doi.org/10.1002/(SICI)1097-4652(199711)173:2<247::AID-JCP30>3.0.CO;2-A
  26. Brachtendorf S, Wanger RA, Birod K, Thomas D, Trautmann S, Wegner MS, et al. 2018. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863: 1214-1227. https://doi.org/10.1016/j.bbalip.2018.07.011
  27. Moriichi K, Fujiya M, Kobayashi Y, Murakami Y, Iwama T, Kunogi T, et al. 2019. Autofluorescence imaging reflects the nuclear enlargement of tumor cells as well as the cell proliferation ability and aberrant status of the p53, Ki-67, and p16 genes in colon neoplasms. Molecules 24: 1106.
  28. Valentini A, Gravina P, Federici G, Bernardini S. 2007. Valproic acid induces apoptosis, p16INK4A upregulation and sensitization to chemotherapy in human melanoma cells. Cancer Biol. Ther. 6: 185-191. https://doi.org/10.4161/cbt.6.2.3578
  29. Wei Y, Huang C, Wu H, Huang J. 2019. Estrogen Receptor Beta (ERβ) mediated-cyclinD1 degradation via autophagy plays an antiproliferation role in colon cells. Int. J. Biol. Sci. 15: 942-952. https://doi.org/10.7150/ijbs.30930
  30. Thompson EB. 1998. The many roles of c-Myc in apoptosis. Ann. Rev. Physiol. 60: 575-600. https://doi.org/10.1146/annurev.physiol.60.1.575
  31. Ebrahim AS, Sabbagh H, Liddane A, Raufi A, Kandouz M, Al-Katib A. 2016. Hematologic malignancies: newer strategies to counter the BCL-2 protein. J. Cancer Res. Clin. Oncol. 142: 2013-2022. https://doi.org/10.1007/s00432-016-2144-1
  32. Ramjiawan RR, Griffioen AW, Duda DG. 2017. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 20: 185-204. https://doi.org/10.1007/s10456-017-9552-y
  33. Apte RS, Chen DS, Ferrara N. 2019. VEGF in signaling and disease: Beyond discovery and development. Cell 176: 1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
  34. Jiang Z, Zhang H, Bockmann RA. 2016. Allostery in BAX protein activation. J. Biomol. Struct. Dyn. 34: 2469-2480. https://doi.org/10.1080/07391102.2015.1119731
  35. Matsumoto K, Ema M. 2014. Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem. 156: 1-10. https://doi.org/10.1093/jb/mvu031
  36. Lamouille S, Xu J, Derynck R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15: 178-196. https://doi.org/10.1038/nrm3758
  37. Dongre A, Weinberg RA. 2019. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20: 69-84. https://doi.org/10.1038/s41580-018-0080-4
  38. Zeng M, Zhu L, Li L, Kang C. 2017. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell. Mol. Biol. Lett. 22: 12.