DOI QR코드

DOI QR Code

C4orf47 is a Novel Prognostic Biomarker and Correlates with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim (Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology) ;
  • Choong Won Seo (Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology) ;
  • Sang Jun Han (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University) ;
  • Jongwan Kim (Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology)
  • 투고 : 2022.11.14
  • 심사 : 2023.03.27
  • 발행 : 2023.03.31

초록

In hepatocellular carcinoma (HCC), chromosome 4 open-reading frame 47 (C4orf47) has not been so far investigated for its prognostic value or association with infiltrating immune cells. We performed bioinformatics analysis on HCC data and analyzed the data using online databases such as TIMER, UALCAN, Kaplan-Meier plotter, LinkedOmics, and GEPIA2. We found that C4orf47 expression in HCC was higher compared to normal tissues. High C4orf47 expression was associated with a worse prognosis in HCC. The correlation between C4orf47 and infiltrating immune cells is positively associated with CD4+T cells, B cells, neutrophils, macrophages, and dendritic cells in HCC. Moreover, high C4orf47 expression was correlated with a poor prognosis of infiltrating immune cells. Analysis of C4orf47 gene co-expression networks revealed that 12501 genes were positively correlated with C4orf47, whereas 7200 genes were negatively correlated. The positively related genes of C4orf47 are associated with a high hazard ratio in different types of cancer, including HCC. Regarding the biological functions of C4orf47 gene, it mainly regulates RNA metabolic process, DNA replication, and cell cycle. The C4orf47 gene may play a prognostic role by regulating the global transcriptome process in HCC. Our findings demonstrate that high C4orf47 expression correlates with poor prognosis and tumor-infiltrating immune cells in HCC. We suggest that C4orf47 is a novel prognostic biomarker and potential immune therapeutic target for HCC.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (RS-2022-00165637, NRF-2021R1C1C1003333).

참고문헌

  1. Angell HK, Lee J, Kim KM, Kim K, Kim ST, Park SH, Kang WK, Sharpe A, Ogden J, Davenport A, Hodgson DR, Barrett JC, Kilgour E. PD-L1 and immune infiltrates are differentially expressed in distinct subgroups of gastric cancer. Oncoimmunology. 2018. 8: e1544442.
  2. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015. 6: 8971.
  3. Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach A, Itoh K. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg. 1990. 125: 200-205. https://doi.org/10.1001/archsurg.1990.01410140078012
  4. Bense RD, Sotiriou C, Piccart-Gebhart MJ, Haanen JBAG, van Vugt MATM, de Vries EGE, Schroder CP, Fehrmann RSN. Relevance of Tumor-Infiltrating Immune Cell Composition and Functionality for Disease Outcome in Breast Cancer. J Natl Cancer Inst. 2016. 109: 192.
  5. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018. 24: 541-550. https://doi.org/10.1038/s41591-018-0014-x
  6. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018. 68: 394-424. https://doi.org/10.3322/caac.21492
  7. Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, Stenvold H, Camps C, Busund LT. The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol. 2011. 6: 824-833. https://doi.org/10.1097/JTO.0b013e3182037b76
  8. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lovgren K, Warren S, Jirstrom K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jonsson G. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020. 577: 561-565. https://doi.org/10.1038/s41586-019-1914-8
  9. Cariani E, Missale G. Immune landscape of hepatocellular carcinoma microenvironment: Implications for prognosis and therapeutic applications. Liver Int. 2019. 39: 1608-1621. https://doi.org/10.1111/liv.14192
  10. Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Inferrera C. Rognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol. 2002. 15: 831-837. https://doi.org/10.1097/01.MP.0000020391.98998.6B
  11. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, Varambally S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017. 19: 649-658. https://doi.org/10.1016/j.neo.2017.05.002
  12. Chen LC, Liu MY, Hsiao YC, Choong WK, Wu HY, Hsu WL, Liao PC, Sung TY, Tsai SF, Yu JS, Chen YJ. Decoding the disease-associated proteins encoded in the human chromosome 4. J Proteome Res. 2013. 12: 33-44. https://doi.org/10.1021/pr300829r
  13. Choi Y, Kim JW, Nam KH, Han SH, Kim JW, Ahn SH, Park DJ, Lee KW, Lee HS, Kim HH. Systemic inflammation is associated with the density of immune cells in the tumor microenvironment of gastric cancer. Gastric Cancer. 2017. 20: 602-611. https://doi.org/10.1007/s10120-016-0642-0
  14. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabadan R, Schwabe RF. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012. 21: 504-516. https://doi.org/10.1016/j.ccr.2012.02.007
  15. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond). 2019. 39: 22.
  16. Fernandez-Cruz L, Prieto M, Targarona EM, Colomer J, Casas A, Saenz A, Pl F, Morin PA. [Pancreas transplantation in 1987]. Ann Gastroenterol Hepatol (Paris). 1988. 24: 23-26.
  17. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015. 21: 938-945. https://doi.org/10.1038/nm.3909
  18. Gomes MA, Priolli DG, Tralhao JG, Botelho MF. Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev Assoc Med Bras (1992). 2013. 59: 514-524. https://doi.org/10.1016/j.ramb.2013.03.005
  19. Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol. 2017. 316: 1-10. https://doi.org/10.1016/j.cellimm.2017.04.005
  20. Gu Y, Li X, Bi Y, Zheng Y, Wang J, Lim X, Huang Z, Chen L, Huang Y, Huang Y. CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY). 2020. 12: 784-807. https://doi.org/10.18632/aging.102656
  21. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi, Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010. 123: 725-731. https://doi.org/10.1007/s10549-009-0674-9
  22. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, Zhang H, Yi S, Jafari M, Lin D, Chung C, Caughey BA, Li G, Dhar D, Shi W, Zheng L, Hou R, Zhu J, Zhao L, Fu X, Zhang E, Zhang C, Zhu JK, Karin M, Xu RH, Zhang K. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci U S A. 2017. 114: 7414-7419. https://doi.org/10.1073/pnas.1703577114
  23. Harding JJ, Khalil DN, Abou-Alfa GK. Biomarkers: What Role Do They Play (If Any) for Diagnosis, Prognosis and Tumor Response Prediction for Hepatocellular Carcinoma? Dig Dis Sci. 2019. 64: 918-927. https://doi.org/10.1007/s10620-019-05517-6
  24. Kulik L, El-Serag HB. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology. 2019. 156: 477-491. https://doi.org/10.1053/j.gastro.2018.08.065
  25. Lanczky A, Nagy A, Bottai G, Munkacsy G, Szabo A, Santarpia L, Gyorffy B. miRpower: a web-tool to validate survivalassociated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat. 2016. 160: 439-446. https://doi.org/10.1007/s10549-016-4013-7
  26. Lazar DC, Avram MF, Romosan I, Cornianu M, Taban S, Goldis A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol. 2018. 24: 3583-3616. https://doi.org/10.3748/wjg.v24.i32.3583
  27. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016. 17: 174.
  28. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017. 77: e108-e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
  29. Liu LZ, Zhang Z, Zheng BH, Shi Y, Duan M, Ma LJ, Wang ZC, Dong LQ, Dong PP, Shi JY, Zhang S, Ding ZB, Ke AW, Cao, Y, Zhang XM, Xi R, Zhou J, Fan J, Wang XY, Gao Q. CCL15 Recruits Suppressive Monocytes to Facilitate Immune Escape and Disease Progression in Hepatocellular Carcinoma. Hepatology. 2019. 69: 143-159. https://doi.org/10.1002/hep.30134
  30. Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, Tang W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019. 18: 130.
  31. Munhoz RR, Postow MA. Recent advances in understanding antitumor immunity. F1000Res. 2016. 5: 2545.
  32. Nguyen K, Jack K, Sun W. Hepatocellular Carcinoma: Past and Future of Molecular Target Therapy. Diseases. 2015. 4: 1.
  33. Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008. 18: 11-18. https://doi.org/10.1016/j.gde.2007.12.007
  34. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015. 12: 681-700. https://doi.org/10.1038/nrgastro.2015.173
  35. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011. 331: 1565-1570. https://doi.org/10.1126/science.1203486
  36. Singal AG, El-Serag HB. Hepatocellular Carcinoma From Epidemiology to Prevention: Translating Knowledge into Practice. Clin Gastroenterol Hepatol. 2015. 13: 2140-2151. https://doi.org/10.1016/j.cgh.2015.08.014
  37. Soo RA, Chen Z, Yan Teng RS, Tan HL, Iacopetta B, Tai BC, Soong R. Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget. 2018. 9: 24801-24820. https://doi.org/10.18632/oncotarget.24835
  38. Sun H, Huang Q, Huang M, Wen H, Lin R, Zheng M, Qu K, Li K, Wei H, Xiao W, Sun R, Tian Z, Sun C. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology. 2019. 70: 168-183. https://doi.org/10.1002/hep.30347
  39. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019. 47: W556-W560. https://doi.org/10.1093/nar/gkz430
  40. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017. 45: W98-W102. https://doi.org/10.1093/nar/gkx247
  41. Tekpli X, Lien T, Rossevold AH, Nebdal D, Borgen E, Ohnstad HO, Kyte JA, Vallon-Christersson J, Fongaard M, Due EU, Svartdal LG, Sveli MAT, Garred O, OSBREAC Frigessi A, Sahlberg KK, Sorlie T, Russnes HG, Naume B, Kristensen VN. An independent poor-prognosis subtype of breast cancer defined by a distinct tumor immune microenvironment. Nat Commun. 2019. 10: 5499.
  42. Uehara T, Ainslie GR, Kutanzi K, Pogribny IP, Muskhelishvili L, Izawa T, Yamate J, Kosyk O, Shymonyak S, Bradford BU, Boorman GA, Bataller R, Rusyn I. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci. 2013. 132: 53-63. https://doi.org/10.1093/toxsci/kfs342
  43. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018. 46: D956-D963. https://doi.org/10.1093/nar/gkx1090
  44. Wallace MC, Preen D, Jeffrey GP, Adams LA. The evolving epidemiology of hepatocellular carcinoma: a global perspective. xpert Rev Gastroenterol Hepatol. 2015. 9: 765-779. https://doi.org/10.1586/17474124.2015.1028363
  45. Wang Z, Zhu J, Liu Y, Liu C, Wang W, Chen F, Ma L. Development and validation of a novel immune-related prognostic model in hepatocellular carcinoma. J Transl Med. 2020. 18: 67.
  46. Yu SJ. A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016. Clin Mol Hepatol. 2016. 22: 7-17. https://doi.org/10.3350/cmh.2016.22.1.7
  47. Zhang SC, Hu ZQ, Long JH, Zhu GM, Wang Y, Jia Y, Zhou J, Ouyang Y, Zeng Z. Clinical Implications of Tumor-Infiltrating Immune Cells in Breast Cancer. J Cancer. 2019. 10: 6175-6184. https://doi.org/10.7150/jca.35901