DOI QR코드

DOI QR Code

RESULTS ASSOCIATED WITH THE SCHWARZ LEMMA ON THE BOUNDARY

  • Received : 2021.09.24
  • Accepted : 2022.08.17
  • Published : 2023.04.30

Abstract

In this paper, some estimations will be given for the analytic functions belonging to the class 𝓡(α). In these estimations, an upper bound and a lower bound will be determined for the first coefficient of the expansion of the analytic function h(z) and the modulus of the angular derivative of the function ${\frac{zh^{\prime}(z)}{h(z)}}$, respectively. Also, the relationship between the coefficients of the analytical function h(z) and the derivative mentioned above will be shown.

Keywords

Acknowledgement

The author would like to thank the reviewer for their constructive comments and suggestions on the earlier version of this paper.

References

  1. T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/fil1713139a 
  2. T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338 
  3. H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910X521643 
  4. B. Catal and B. N. Ornek, Applications of Jack's lemma for certain subclasses of holomorphic functions on the unit disc, Commun. Korean Math. Soc. 34 (2019), no. 2, 543-555. https://doi.org/10.4134/CKMS.c180157 
  5. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39 
  6. G. M. Goluzin, Geometrical Theory of Functions of Complex Variable (Russian), second edition, Izdat. "Nauka", Moscow, 1966. 
  7. M. Mateljevic, Schwarz lemma, and distortion for harmonic functions via length and area, Potential Anal. 53 (2020), no. 4, 1165-1190. https://doi.org/10.1007/s11118-019-09802-x 
  8. M. Mateljevic, N. Mutavdzic, and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, Appl. Anal. Discrete Math. 16 (2022), no. 1, 111-131. https://doi.org/10.2298/aadm200319006m 
  9. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, J. Class. Anal. 12 (2018), no. 2, 93-97. https://doi.org/10.7153/jca-2018-12-08 
  10. P. R. Mercer, An improved Schwarz lemma at the boundary, Open Math. 16 (2018), no. 1, 1140-1144. https://doi.org/10.1515/math-2018-0096 
  11. B. N. Ornek, Some results of the Caratheodory's inequality at the boundary, Commun. Korean Math. Soc. 33 (2018), no. 4, 1205-1215. https://doi.org/10.4134/CKMS.c170372 
  12. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0 
  13. Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-02770-7 
  14. H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938), no. 1, 739-742. https://doi.org/10.1007/BF0118111