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WARPED PRODUCT PSEUDO-SLANT SUBMANIFOLDS OF

A KENMOTSU MANIFOLD
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Abstract. For a pseudo-slant submanifold of a Kenmotsu manifold, we

have worked out conditions in terms its canonical structure tensors, T
and F , and its shape operator so that it reduces to a warped product

submanifold.

1. Introduction

Initially R. L. Bishop and B. O’Neill [1] introduced the notion warped prod-
uct manifolds in order to construct examples of manifolds of negative sectional
curvatures. B. Y. Chen initiated the study of warped product spaces with
extrinsic geometric point of view when he considered CR-submanifold of a
Kaehler manifold as warped product and described many extrinsic geometric
properties of the submanifolds in terms of tensor field (c.f. [6, 7]). Moreover
Chen [4] has proved that, among CR-submanifolds of a Kaehler manifold, the
CR products are characterized by the condition on T to be parallel. As a
step forward V. A. Khan et al. [13, 14] worked out a characterization involv-
ing ∇̄T and ∇̄F under which a CR submanifolds of a Kaehler manifold and
submanifold of Kenmotsu manifold reduces to a warped product submanifolds.

Slant immersion in complex geometry were defined by B. Y. Chen as a natu-
ral generalization of both holomorphic and totally real immersions [5]. In [15],
A. Lotta has introduced the notion of slant immersions of Riemannian manifold
into an almost contact metric manifold and he has proved some properties of
such immersions.

The notion of semi-slant submanifold of almost Hermitian manifold was in-
troduced by N. Papaghiuc [16], after that Cabrerizo et al. [2] defined and stud-
ied semi-slant submanifolds in the setting of almost contact metric manifold.
A step forward. S. K. Hui et al. studied new class of warped product sub-
manifolds as skew-CR submanifolds [9], Pointwise bi-slant submanifolds [10] of
Kenmotsu manifold and also obtained some interesting results of submanifold
of a kenmotsu manifold [11].
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In this present article, we study semi-slant submanifold and pseudo-slant
submanifold of a Kenmotsu manifold. Section 2 deals with basic concepts
formulas and even some known result that are relevant for the subsequent
sections. In Section 3, we have explored conditions for the integrability of
the distributions on a semi-slant submanifold of Kenmotsu manifold. These
result will helped to develop the characterization in Section 4 under which a
semi-slant submanifold of a Kenmotsu manifold reduces to warped product
submanifolds. In Section 5, we studied the integrability conditions for the
distributions and also indicate some geometric properties of the leaves of the
distributions. finally, last section contained some result on pseudo-slant warped
product submanifolds of a Kenmotsu manifold in terms of ∇̄T , ∇̄F and shape
operator.

2. Preliminaries

An almost contact structure on a (2n+1)-dimensional manifold M̄ is defined
by a (1, 1) tensor field ϕ, a vector field ξ and the dual 1-form η of ξ satisfying
the following properties

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1.

There always exists a Riemannian metric g on M̄ satisfying

(2.1) g(ϕU, ϕV ) = g(U, V )− η(U)η(V )

for any U, V ∈ M̄. It is easy to observe that

g(ϕU, V ) + g(U, ϕV ) = 0, g(U, ξ) = η(U).

If ∇̄ is the Levi-Civita connection on (M̄, g), then the covariant derivative of
ϕ is defined as

(2.2) (∇̄Uϕ)V = ∇̄UϕV − ϕ∇̄UV.

Let Ω be the fundamental 2-form on M̄ , i.e., Ω(U, V ) = g(U, ϕV ). If Ω = dη,
M̄ is said to be a contact manifold. If ξ is a killing vector field with respect
to g, the contact metric structure is called a k-contact structure. It is easy
to show that a contact metric manifold is k-contact if ∇̄Uξ = −ϕU for each
vector field U on M̄ . The almost contact structure on M̄ is said to be normal
if [ϕ, ϕ] + 2dη ⊗ ξ = 0, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ. A Sasakian
manifold is a normal contact metric manifold. It is known that an almost
contact metric manifold is a Sasakian manifold if and only if

(∇̄Uϕ)V = g(U, V )ξ − η(V )U.

S. Tanno [17] classified connected almost contact metric manifolds whose au-
tomorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of a plane section containing ξ is a constant c. He showed
that they can be divided into three classes: (i) Homogeneous normal contact
Riemannian manifolds with c > 0, (ii) Global Riemannian product of a line
and a Kaehler manifold of constant holomorphic sectional curvature if c = 0
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and (iii) A warped product space R×f C
n if c < 0. It is known that manifolds

of class (i) are characterized some tensorial equations. In fact, these manifolds
admit Sasakian structure. The manifolds of class (ii) are characterized by a
tensorial equation and admit cosymplectic structure. Kenmotsu [12] character-
ized differential geometric properties of manifolds of class (iii). The structure
obtained on this class of manifolds is known as Kenmotsu structure. These
structures are not Sasakian. In fact, Kenmotsu manifolds are characterized by
the following tensorial equation:

(2.3) (∇̄Uϕ)V = g(ϕU, V )− η(V )ϕU.

It can also be seen that on a Kenmotsu manifold,

(2.4) ∇̄Uξ = −ϕ2U = U − η(U)ξ

for all vector fields U, V on M̄ .
Throughout we denote M a submanifold of an almost contact metric man-

ifold M̄ with TM and T⊥M as the tangent and normal bundles on M , re-
spectively. If ∇ and ∇⊥ are the induced Riemannian connections on TM and
T⊥M , then Gauss and Weingarton formulae are

∇̄UV = ∇UV + h(U, V ),(2.5)

∇̄UN = −ANU +∇⊥
UN,(2.6)

for any U, V ∈ Γ(TM) and N ∈ Γ(T⊥M). AN and h, respectively, denote the
shape operator (corresponding to the normal vector field N) and the second
fundamental form of the immersion of M into M̄ . The two are related as

(2.7) g(ANU, V ) = g(h(U, V ), N),

where g denotes the Riemannian metric on M̄ as well as the induced metric on
M .

For any U ∈ Γ(TM), we write

(2.8) TU = tan(ϕU) and FU = nor(ϕU)

similarly, for N ∈ TM⊥, we write

(2.9) tN = tan(ϕN) and fN = nor(ϕN),

where ‘tan’ and ‘nor’ are the natural projections associated with the direct
decomposition:

TxM̄ = TxM ⊕ T⊥
x M, x ∈ M.

The tensor fields on M determined by the endomorphism T and the normal
valued 1-form F are denoted by the same letters T and F , respectively. Simi-
larly, t and f are tangential and normal valued (1,1)-tensor fields on the normal
bundle of M . The covariant differentiations of the tensor fields P , and F , are
defined, respectively, as:

(2.10) (∇̄UT )V = ∇UTV − T∇UV,

(2.11) (∇̄UF )V = ∇⊥
UFV − F∇UV.
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On a submanifold of a Kenmotsu manifold, by equations (2.4) and (2.5), we
get

∇Xξ = X − η(X)ξ, h(X, ξ) = 0

for each U ∈ TM . Also from equations (2.3), (2.5), (2.6) and (2.7) to (2.11),
we obtain

(2.12) (∇̄XT )Y = AFY X + th(X,Y )− g(X,TY )− η(Y )TX,

(2.13) (∇̄XF )Y = fh(X,Y ) + h(X,TY ) + η(Y )FX.

For any x ∈ M and X ∈ TxM , if the vectors X and ξ are linearly inde-
pendent, then angle θ(X) ∈ [0, π

2 ] between ϕX and TxM is well defined. If
θ(X) doses not defined on the choice of x ∈ M and X ∈ TxM , we say that M
is slant in M̄ . The contact angle θ is called the slant angle of M in M̄ . The
anti-invariant submanifolds of an almost contact metric manifold are slant sub-
manifolds with slant angle π

2 and invariant submanifolds are slant submanifolds
with slant angle 0. If slant angle θ ̸= 0, π

2 , the slant submanifold is called a
proper slant submanifold of an almost contact metric manifold. If M is a slant
submanifold of an almost contact metric manifold, then the tangent bundle
TM of M is decompose as

TM = D ⊕ {ξ}
when {ξ} denotes the distribution spanned by the structure vector field ξ and
D is a complementary distribution {ξ} in TM , known as slant distribution.

For a slant submanifold of a contact manifold Cabrerizo [3] proved the fol-
lowing theorem:

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold
M̄ such that ξ ∈ TM . Then M is slant if and only if there exists a constant
λ ∈ [0, 1] such that

T 2 = −λ(I − η ⊗ ξ).

Furthermore, in such a case, if θ is the slant angle of M , then it verifies that
λ = cos2 θ. Thus one has the following consequence of the above formulae:

g(TX, TY ) = cos2 θ[g(X,Y )− η(X)η(Y )],(2.14)

g(FX,FY ) = sin2 θ[g(X,Y )− η(X)η(Y )].(2.15)

The notion of warped (or more generally warped bundle) was introduce by
R. L. Bishop and B. O’Neill [1] in order to construct a large variety of mani-
folds of negative sectional curvature and are generalized version of Riemannian
product of two manifolds. We recall in the following paragraphes the notion
of warped product manifolds and some intrinsic geometric properties of these
manifolds.

Let (M1, g1) and (M2, g2) be two Riemannian manifolds with Riemannian
metrics g1 and g2, respectively, and f be a positive differentiable function on
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M1. Then the warped product M1 ×f M2 is the manifold M1 ×M2 endowed
with the Riemannian metric g given by

g = π∗(g1) + (f ◦ π1)
2π∗

2(g2),

where π = (1, 2) are the projection maps of M on to M1 and M2, respectively.
Then the function f , in this case known as the warping function. If the warping
function is just a constant, the warped product is simply a Riemannian product,
known as trivial warped product.

A warped product manifold is isometrically immersed into Riemannian man-
ifold is known as warped product submanifold.

Few important observation and formulae revealing some geometric aspects
of warped product manifold are obtained by R. L. Bishop and B. O’Neill [1]:

Theorem 2.2. Let M = M1 ×f M2 be a warped product manifold. If X,Y ∈
TM1 and Z,W ∈ TM2, then

(i) ∇XY ∈ TM1,
(ii) ∇XZ = ∇ZX = X(ln f)Z,
(iii) nor(∇ZW ) = −g(Z,W )∇ ln f ,

where nor(∇ZW ) denotes the component of ∇ZW in TM1 and ∇f is the gra-
dient of f defined as

(2.16) g(∇f, U) = Uf

for any U ∈ TM .

A couple of important consequences of the above theorem can be stated as:

Corollary 2.3. On a warped product manifold M = M1 ×f M2;

(i) M1 is totally geodesic.
(ii) M2 is totally umbilical.

3. Pseudo-slant submanifold of a Kenmotsu manifold

A submanifold M of M̄ is said to be a pseudo-slant submanifold of an
almost contact metric manifold M̄ if there exit two orthogonal complementary
distributions D⊥ and Dθ on M such that

(1) TM = D⊥ ⊕Dθ ⊕ {ξ},
(2) the distribution D⊥ is anti-invariant under ϕ, i.e., ϕD⊥ ⊂ TM⊥,
(3) the distribution Dθ is slant with slant angle θ ̸= 0.

Throughout this section we studied the pseudo-slant warped product subman-
ifold of the type M⊥ ×f Mθ isometrically immersed into a Kenmotsu manifold
M̄ with structure vector field ξ tangential to M⊥, where M⊥ and Mθ are, re-
spectively, ϕ-anti-invariant submanifold and proper slant submanifold of M̄ . In
this setting the formula of Theorem 2.2(ii) can be written as

(3.1) ∇XZ = ∇ZX = Z ln fX
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for each X ∈ Dθ and Z ∈ D⊥. In this case the complement of FD⊥ and FDθ

is an invariant subbundle of TM⊥ dented by µ. Thus

TM⊥ = FD⊥ ⊕ FDθ ⊕ µ.

Let M be a pseudo-slant submanifold and for any X ∈ TM , we can write as

(3.2) X = BX + CX + η(X)ξ,

where BX ∈ D⊥ and CX ∈ Dθ. Now by using equations (2.8) and (3.2), we
have

ϕX = ϕBX + TCX + FCX.

As D⊥ is anti-invariant under ϕ we obtain

ϕBX = FBX, TBX = 0.

Thus
TX = TCX, FX = FBX + FCX.

Lemma 3.1. Let M be a pseudo-slant submanifold of a Kenmotsu manifold
M̄ . Then

ϕD⊥⊥ FDθ

for each X ∈ Dθ and Z ∈ D⊥.

Proof. From (2.8), we obtain g(ϕZ, FCX) = g(ϕZ, ϕCX − TCX) for Z ∈ D⊥

and X ∈ Dθ, hence g(ϕZ, FCX) = g(ϕZ, ϕX). Thus from (2.1), we have
g(ϕZ, FCX) = 0 as D⊥ and Dθ are orthogonal. □

If M is a pseudo-slant submanifold of a Kenmotsu manifold M̄ , the applying
ϕ to (2.8), we obtain

−X + η(X)ξ = T 2X + FTX + tFX + fFX

for X ∈ TM . Comparing the tangential and normal components, we derive

−X + η(X)ξ = T 2X + tFX, FTX + fFX = 0.

From Theorem 2.1, above equation reduces to

sin2 θ(−X + η(X)ξ) = tFX, FTX + fFX = 0.

From above we have the following result.

Corollary 3.2. Let M be a pseudo-slant submanifold of a Kenmotsu manifold
M̄ . Then

tFX = sin2 θ(−X + η(X)ξ), fFX = −FTX

for any X ∈ Dθ.

Since we want to study the pseudo-slant submanifold as a warped product
submanifold, we need to ensure the existence of ϕ-anti-invariant and slant factor
of the submanifolds. To this end we have:

Theorem 3.3. Let M be a pseudo-slant submanifold of a Kenmotsu manifold
M̄ . Then the anti-invariant distribution D⊥ is always integrable.
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Proof. For Z,W ∈ D⊥ and X ∈ Dθ and from (2.10), we have

g([Z,W ], TX) = g((∇ZT )W,X)− g((∇WT )Z,X).

On using formula (2.12), we have

g([Z,W ], TX) = 0.

Hence, D⊥ is integrable. □

Theorem 3.4. Let M be a pseudo-slant submanifold of a Kenmotsu manifold
M̄ . Then the slant distribution Dθ is integrable if and only if

t{∇⊥
XFY + h(X,TY )−∇⊥

Y FX − h(Y, TX)}

lies in Dθ for each X,Y ∈ Dθ.

Proof. By using equations (2.5), (2.6), (2.8) and (2.12), we have

g([X,Y ], Z) = g(∇⊥
XFY + h(X,TY )−∇⊥

Y FX − h(Y, TX), ϕZ)

for each X,Y ∈ Dθ and Z ∈ D⊥. This proves the theorem completely. □

In this section we are going to study the problem when a pseudo-slant sub-
manifold of a Kenmotsu manifold is a Riemannian product manifold of anti-
invariant submanifold and slant submanifold.

Theorem 3.5. Let M be a proper pseudo-slant submanifold of a Kenmotsu
manifold M̄ . Then the distribution Dθ defined a totally geodesic foliation if
and only if

g(AϕZTY,X) = g(AFTY Z,X)

for all X,Y ∈ Dθand Z ∈ D⊥.

Proof. From (2.5), we have g(∇XY,Z) = g(∇̄XY, Z) for X,Y ∈ Dθ and Z ∈
D⊥. Then from (2.1) and (2.3), we get

g(∇XY,Z) = g(∇̄XϕY, ϕZ).

Using (2.8), we obtain

g(∇XY, Z) = g(∇̄XTY, ϕZ) + g(∇̄XFY, ϕZ).

Hence

g(∇XY,Z) = −g(∇̄XϕZ, TY )− g(∇̄XϕZ, FY ).

Now, using (2.6) and (2.2), we obtain

g(∇XY, Z) = g(AϕZX,TY ) + g(ϕFY, ∇̄XZ).

Then from (2.9), we get

g(∇XY,Z) = g(AϕZX,TY ) + g(∇XZ, tFY ) + g(h(X,Z), fFY ).

Then from Corollary 3.2, we arrive at

g(∇XY,Z) = g(AϕZX,TY )− sin2 θg(∇XZ, Y )− g(h(X,Z), FTY ).
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Then from (2.7), we get

cos2 θ g(∇XY, Z) = g(AϕZTY,X)− g(AFTY Z,X).

This proves the assertion of the theorem. □

Theorem 3.6. Let M be a proper pseudo-slant submanifold of a Kenmotsu
manifold M̄ . Then the distribution D⊥ defines a totally geodesic foliation on
M if and only if

g(AϕWTX,Z) = g(AFTXW,Z)

for Z,W ∈ D⊥ and X ∈ Dθ.

Proof. From (2.1), (2.2), (2.3), (2.8) and (2.6), we obtain

g(∇ZW,X) = −g(AFWZ, TX) + g(ϕ∇̄ZW,FX)

for Z,W ∈ D⊥ and X ∈ Dθ. Using (2.5), we get

g(∇ZW,X) = −g(AFWZ, TX) + g(FB∇ZW,FX) + g(h(Z,W ), ϕFX).

Thus using (2.9), (2.15) and Corollary 3.2, we derive

g(∇ZW,X) = −g(AFW , TX) + sin2 θ g(B∇ZW,X) + g(h(Z,W ), FTX).

Hence, we arrive at

cos2 θ g(∇ZW,X) = −g(AFWTX,Z) + g(AFTXW,Z),

which proves the assertion. □

Thus from Theorems 3.5 and 3.6 we have the following result:

Corollary 3.7. Let M be a pseudo-slant submanifold of a Kenmotsu manifold
M̄ . Then M is locally a Riemannian product manifold M = M⊥ ×Mθ if and
only if

AϕWTX = AFTXW

for each X ∈ Dθ and Z,W ∈ D⊥, where M⊥ is an anti-invariant submanifold
and Mθ is a slant submanifold of M̄ .

4. Pseudo-slant warped product submanifold of a Kenmotsu
manifold

In this section we consider the warped product pseudo-slant submanifold of
the form M⊥ ×f Mθ, where M⊥ is an anti-invariant submanifold of M̄ and Mθ

is a proper slant submanifold.

Lemma 4.1. Let M = M⊥ ×f Mθ be a pseudo-slant warped product submani-
fold of a Kenmotsu manifold M̄ . Then

g(h(U, V ), FZ) = g(h(U,Z), FV ) + Z ln fg(CU, TV ) + η(Z)g(ϕU, ϕV )

for each U, V ∈ TM and Z ∈ D⊥ ⊕ {ξ}.
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Proof. By using Gauss formula (2.2) and (2.3), we have

g(h(U, V ), FZ) = g(ϕU, V )η(Z)− g(∇̄UϕV,Z).

Using (2.9), we get

g(h(U, V ), FZ) = g(ϕU, V )η(Z)− g(∇̄UTV,Z)− g(∇̄UFV,Z).

Again using (2.5), (2.6), (3.1) and from the fact that TV ∈ Dθ for each V ∈
TM , we get

g(h(U, V ), FZ) = g(h(U,Z), FV ) + Z ln fg(CU, TV ) + η(Z)g(ϕU, ϕV ),

which proves the lemma. □

Lemma 4.2. Let M = M⊥ ×f Mθ be a pseudo-slant warped product subman-
ifold of a kenmotsu manifold M̄ . Then for each U, V ∈ TM , X ∈ Dθ and
Z ∈ D⊥,

(i) (∇XT )Z = −(Z ln f)TX,
(ii) (∇UT )X = AFXU + th(U,X) + g(TU,X)ξ,
(iii) (∇UT )ξ = −η(V )TU .

Proof. In view of the formula (2.10), Theorem 2.2 and the fact that TZ = 0,
we obtain

(∇XT )Z = −(Z ln f)TX.

This proves part (i). For part (ii), making use (2.10), (2.12) and Theorem 2.2,
we get

(∇UT )X = AFXU + th(U,X) + g(TU,X)

this verifies part (ii). Further by formula (2.6) and the fact that TZ = 0, we
get part (iii). □

Lemma 4.3. Let M = M⊥ ×f Mθ be a pseudo-slant warped product submani-
fold of a Kenmotsu manifold M̄ . Then

(i) g(h(X,Y ), FZ)− g(h(Y, Z), FX) = g(TX, Y ){−η(Z) + Z ln f},
(ii) g(h(X,Z), FW ) = g(h(Z,W ), FX)

for each X,Y ∈ Dθ and Z,W ∈ D⊥.

Proof. On using (2.5), (2.2) and (2.3), we get

g(h(X,Y ), FZ) = g(TY,X)η(Z)− g(∇̄Y ϕX,Z).

Then from (2.6), (2.8) and from Theorem 2.2, we obtain

g(h(X,Y ), FZ) = g(TY,X)η(Z) + Z ln fg(TX, Y ) + g(AFXY,Z).

Hence, we arrive at

g(h(X,Y ), FZ)− g(h(Y,Z), FX) = g(TX, Y ){−η(Z) + Z ln f}.
For part (ii), using (2.5) and (2.3), we get

g(h(X,Z), FW ) = g(ϕX, ∇̄ZW ).
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Then from (2.8) and from Theorem 2.2, we arrive at

g(h(X,Z), FW ) = g(h(Z,W ), FX). □

Now we have the following result in terms of shape operator:

Theorem 4.4. A pseudo-slant submanifold of a Kenmotsu manifold M̄ is
locally a pseudo-slant warped product if and only if there exists a C∞-function
µ on M such that Xµ = 0 satisfying

(4.1) AFZX −AFXZ = {η(Z)− Z(ln f)}TX
for all X ∈ Dθ and Z ∈ D⊥.

Proof. From (2.12) and (2.2) we have

(4.2) AFXZ + th(X,Z) = 0.

Similarly again from (2.12) and from Theorem 2.2, we get

(4.3) η(Z)TX −AFZX − Z(ln f)TX = th(X,Z).

From (4.2) and (4.3), we obtain

AFZX −AFXZ = {η(Z)− Z(ln f)}TX.

Conversely suppose that M is a pseudo-slant submanifold of a Kenmotsu
manifold M̄ satisfies (2.11), then for any Z,W ∈ D⊥ and X ∈ Dθ, from (2.12)
and hypothesis of the theorem we have g((∇WT )Z,X) = 0. On using (2.2) we
get g(∇ZW,X) = 0 which implies that leaf of the D⊥ ⊕ {ξ} is totally geodesic
in M . Further from (4.1) and (2.2), we have

g(∇XTY, Z) = −Z(µ)g(TX, Y ).

Let Mθ be a leaf of Dθ and h
′
be the second fundamental form of the immersion

of Mθ in M . Then for any X,Y ∈ Dθ and Z ∈ D⊥ the left hand side reduces
to g(∇XTY, Z) = g

′
(h(X,TY )) from which we have

g(h
′
(X,Y ), Z) = Zµg(X,Y ),

which implies that Mθ is totally umbilical in M with ∇µ as the mean curvature
vector with respect to the immersion ofMθ in to M . Further as Xµ = 0 for each
X ∈ Dθ, ∇µ is parallel, that is, leaves of Dθ are extrinsic spheres. Hence, by
virtue of theorem of S. Hiepko [8], M⊥⊕f Mθ is a warped product submanifold
of M̄ . □

Now we may establish the following characterization.

Theorem 4.5. A pseudo-slant submanifold M of a Kenmotsu manifold M̄ is a
pseudo-slant warped product submanifold M⊥×f Mθ if and only if there exists a
smooth function µ on M with Xµ = 0 for each X ∈ D⊥ satisfies the following

(∇UT )V = AFCV CU + th(CU,CV )−BV (ln f)TCU

− η(V )TU + g(TCU,CV )ξ
(4.4)

for each U, V ∈ TM .
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Proof. Let M⊥ ×f Mθ be a pseudo-slant warped product submanifold of a
Kenmotsu manifold M̄ . Then on using from Lemma 4.2(iii), we may write

(∇UT )V = (∇BUT )BV + (∇CUT )BV + (∇UT )CV

− η(V )TU + η(U)(∇ξT )BV.
(4.5)

First term of the right hand side from (2.6) and the fact that TZ = 0 reduces
to (∇BUT )BV = −T (∇BU )BV . Further as M⊥ is totally geodesic in M , we
have (∇BUT )BV = 0. Similarly (∇ξT )BV = 0.

On the other hand on making use of Theorem 2.2, equation (4.5) takes the
form

(∇UT )V = AFCV CU+th(CU,CV )−BV ln fTCU−η(V )TU+g(TCU,CV )ξ.

Conversely suppose that M is a pseudo-slant submanifold of a Kenmotsu
manifold M̄ such that for each U, V ∈ TM and for a smooth function µ on M
satisfying Xµ = 0 for each X ∈ Dθ, (4.4) holds. Now from (4.4), (∇ZT )W = 0
for each Z,W ∈ D⊥. Making use of (2.6) and the fact TW = 0 for each
W ∈ D⊥, we get T∇ZW = 0, which implies that ∇ZW ∈ D⊥⊕{ξ}. Therefore
D⊥ ⊕ {ξ} is parallel on M . That is D⊥ ⊕ {ξ} is integrable and its leaves M⊥
are totally geodesic in M . For each X ∈ Dθ and Z ∈ D⊥ ⊕ {ξ}, (4.4) reduces
to

(∇XT )Z = −BZ(µ)TX − η(Z)TX.

Using (3.1) and ξ ln f = 1, we obtain

(∇XT )Z = −Z(µ)TX.

From (2.10) and the fact that TZ = 0, after that taking inner product on both
side with TY for each Y ∈ Dθ, we get

g(T∇XZ, TY ) = g(TX, TY )Z(µ).

On using (2.14) and (2.16), we deduce that

g(∇XY,Z) = −g(X,Y )g(∇µ,Z).

Let us assume that Mθ is a leaf of Dθ and h
′
is the second fundamental form

of the immersion of Mθ in to M . Then

g(h
′
(X,Y ), Z) = −g(X,Y )g(∇µ,Z).

As h
′
(X,Y ) lies in D⊥ ⊕ {ξ}, it follows from above equation that

h
′
(X,Y ) = −g(X,Y )∇µ.

That means Mθ is totally umbilical in M with ∇µ as the mean curvature vector
with respect to the immersion of Mθ in to M . Further as Xµ = 0 for each
X ∈ Dθ, ∇µ is parallel, that is, leaves of Dθ are extrinsic spheres. Hence, by
virtue of theorem of S. Hiepko [8], M⊥⊕f Mθ is a warped product submanifold
of M̄ .
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If M is a pseudo-slant submanifold of a Kenmotsu manifold M̄ , then from
(2.10) and (2.12), we have

(4.6) AFZX = th(X,Z) + η(Z)TX + (∇XT )Z

for each X ∈ Dθ and Z ∈ D⊥ ⊕ {ξ}. Again from (2.10) and (2.12), we get

(4.7) th(X,Z) = (∇ZT )X −AFXZ.

SinceM is a pseudo-slant warped product submanifold of a Kenmotsu manifold
M̄ , the from (4.4) and ξ ln f = 1, we obtain

(∇XT )Z = −(Z ln f)TX, and (∇ZT )X = 0.

From (4.6) and (4.7) and above equation, we arrive at

AFZX −AFXZ = {η(Z)− Z(ln f)}TX.

Hence, we conclude that. □

Corollary 4.6. A pseudo-slant submanifold of a Kenmotsu manifold M̄ is a
pseudo-slant warped product if and only if there exists a function µ on M with
Xµ = 0 for each X ∈ Dθ such that

AFZX −AFXZ = {η(Z)− Z(ln f)}TX

for each X ∈ Dθ and Z ∈ D⊥ ⊕ {ξ}.

A characterization in terms of the canonical structure F is obtained in the
following theorem:

Theorem 4.7. A pseudo-slant submanifold M of a Kenmotsu manifold M̄
is a pseudo-slant warped product submanifold M⊥ ×f Mθ if and only if there
exists a smooth function µ on M with Xµ = 0 for each X ∈ D⊥ satisfying the
following:

g((∇UF )V, FZ) = g(CU, V ) cos2 θZ(ln f)− g(h(U,Z), FTV )

− η(V )g(BU,Z)− g(TU, TV )η(Z)
(4.8)

for each U, V ∈ TM and Z ∈ D⊥.

Proof. Let M = M⊥ ×f Mθ be a pseudo-slant warped product submanifold of
a Kenmotsu manifold M̄ . Then for any U, V ∈ TM and W ∈ D⊥ ⊕ {ξ}, from
(2.13), we have

(4.9) g(h(U, V ), FZ) = g(fh(U, V ))− g(h(U, TV ))− η(V )g(FU,FZ).

The first term in the right hand side of the above equation will be zero as
g(ϕh(U, V )ϕZ) = g(h(U, V ), Z) = 0. For the last term using (3.2) and (2.15)
reduces to −η(V )g(BU,Z). On applying Lemma 4.1 the middle term takes the
form

g(h(U, TV ), FZ) = g(h(U,Z), FTV ) + g(T 2CU, V )Z(ln f) + η(Z)g(TU, TV ).
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From (2.14) and using the fact η(CU) = 0, we have

g(h(U, TV ), FZ)=g(h(U,Z), FTV )−g(CU, V ) cos2 θ Z(ln f)+η(Z)g(TU, TV ).

Using above in (4.9), we arrive at (4.8).
Conversely suppose that M is a pseudo-slant submanifold of a Kenmotsu

manifold M̄ such that (4.8) holds for a C∞-function µ on M with Xµ = 0 for
each X ∈ Dθ. Then for X ∈ Dθ and Z ∈ D⊥ ⊕ {ξ}, we obtain

g((∇WF )X,FZ) = −g(h(Z,W ), FTX).

Making use of formula (2.13) while taking account of the fact that

g(fh(X,W )FZ) = 0 and η(X) = 0 for each X ∈ Dθ,

the equation reduces to

g(h(W,TX), FZ) = g(h(Z,W ), FTX).

On replacing X by TX and from (2.3) and (2.8), we get

g(h(W,X), FZ) = −g(∇̄ZϕW,X) + g(T∇ZW,X).

Using Weingarton formula on the right hand side and (2.7) on the left hand
side, we deduce that

g(∇ZW,TX) = 0,

from which we have ∇ZW ∈ D⊥ ⊕ {ξ} for Z ∈ D⊥ ⊕ {ξ}. Hence D⊥ ⊕ {ξ} is
parallel, i.e., D⊥ ⊕ {ξ} is integrable and its leaves are totally geodesic in M .
Again by (4.9), we obtain

g((∇XF )Y, FZ) = Zµ cos2 θ g(CX, Y )− g(h(X,Z), FTY )

− η(Z)g(TX, TY ).
(4.10)

Using (2.13) and from the fact that g(fh(X,Y ), FZ) = 0, the left hand side of
the above equation reduces to −g(h(X,TY ), FZ), whereas the second term of
the right hand side simplified as

g(h(X,Z), FTY ) = g(∇̄XZ, ϕTY )− g(∇̄XZ, T 2Y ).

From Theorem 2.1, (2.6) and (2.3), we get

g(h(X,Z), FTY ) = −η(Z)g(TX, TY ) + g(h(X,TY ), FZ)− cos2 θ g(∇XY,Z).

Substituting above equation and value of g((∇̄XF ), FZ) in (4.10), we have

g(∇XY,Z) = −Z(µ)g(X,Y ).

Let Mθ be a leaf of Dθ and h
′
be the second fundamental form of the immersion

of Mθ into M . Then by Gauss formula and from (2.16), we arrive at

h
′
(X,Y ) = g(X,Y )∇µ,

which shows that Mθ is totally umbilical in M with ∇µ as the mean curvature
vector with respect to the immersion of Mθ in to M . Further as Xµ = 0
for each X ∈ Dθ, ∇µ is parallel, that is, leaves of Dθ are extrinsic spheres.
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Hence, by virtue of theorem of S. Hiepko [8], M⊥ ⊕f Mθ is a warped product
submanifold of M̄ . □
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