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GENERALIZED VARIGNON’S AND

MEDIAL TRIANGLE THEOREMS

Francesco Laudano

Abstract. In this paper, we extend the medial triangle theorem and

Varignon’s theorem to generic two-dimensional polygons and highlight
the role played by diagonals in this process. One of the results is a

synthetic definition of the concept of median for an n-sided polygon.

1. Introduction

The “medial triangle theorem” (see [1, 1.4, p. 10] and [5, Theorem 36 c,
p. 24]) and Varignon’s theorem (see [17, Corollaire IV, Livre Quartieme, p. 62]
and [2, Theorem 3.11, p. 53]) are among the simplest and, at the same time,
most interesting results in Euclidean geometry. As is well known (see Figure
1), the first theorem can be briefly stated as follows:

M : The midpoints of the sides of an arbitrary triangle form a triangle with
sides that are half and parallel to the sides of the initial triangle.
While the second theorem states that:

V : The midpoints of the sides of an arbitrary quadrilateral form a parallelogram
with sides that are half and parallel to the diagonals of the initial quadrilateral.

The immediate consequences of the abovementioned theorems are that the
perimeter of the medial triangle M1M2M3 is half that of the perimeter of
the triangle A1A2A3, whereas the perimeter of the Varignon parallelogram
N1N2N3N4 equals the sum of the diagonals of the initial quadrilateral
B1B2B3B4. Figure 2 shows that the previous statements cannot be extended
sic et simpliciter to polygons with more than 4 sides.

In this paper, we extend Varignon’s theorem and the medial triangle theorem
to generic two-dimensional polygons. To prove these extensions synthetically,
we first provide a synthetic definition by induction of the concept of the me-
dian of a generic polygon (Definition 1). Indeed, the “centre” of a polygon
is often defined in terms of the average of the coordinates of the vertices (see
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Figure 1. The medial triangle theorem and Varignon’s theorem.

Figure 2. The sides of M1M2M3M4M5 are not paral-
lel to the sides of A1A2A3A4A5. The opposite sides of
N1N2N3N4N5N6 are neither parallel nor equal.

[8, Definition 1, p. 650] and [10, p. 122]), and the medians are then defined
as the segments joining the vertices to the “centre” of the opposite polygon.
The same definition can be applied to a triangle, by considering the sides as
degenerate polygons (see, for example, [3, p. 21] and [16, p. 72]).

Various terms have been used in the literature to refer to the intersection
point of the medians. In particular, we note the use of “centroid” ([1, p. 10],
[10, p. 122] and [7, p. 637]), “barycenter” ([7, p. 637] and [16, p. 72]), “centre of
gravity” ([6], [9] and [7, p. 637]) and “center of mass” ([16, p. 72] and [7, p. 637]).
The use of these terms is understandable; indeed, as the author has noted in
[16, p. 72]:
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The vector average of two or more points is physically significant because it is
the barycenter or center of mass of the system obtained by placing equal masses
at the given points.

However, it is desirable to adopt a unique term for this intersection point,
that does not reference physical characteristics. Moreover, as noted in [15, The-
orem 1, p. 42] and [7, Proposition 1.1 and Theorem A, pp. 637–638], different
centres of mass can be associated with a generic n-gon, because the mass can
be distributed over the entire region delimited by the sides, only on the sides
or only on the vertices. Therefore, to avoid these ambiguities, we use the term
“median point” that was adopted in [5, p. 161 and p. 173] in reference to
triangles.

In Section 2, starting from a synthetic definition of the concept of median and
“median point” (Definition 1), we provide an extension of the medial triangle
theorem that is valid for two-dimensional convex and nonintertwined polygons
(Theorem 2.2).

In Section 3, we define the Varignon polygon of a generic 2k-gon and provide
an extension of Varignon’s theorem (Theorem 3.3).

In Section 4, we define the medial polygons of a generic n-gon, then we show
that the medial triangle theorem and Varignon’s theorem are special cases of a
general theorem that holds for any n-gon (Theorem 4.1). Finally, we use this
general theorem to derive natural extensions for the classic sentences of the
medial triangle theorem and Varignon’s theorem (Theorem 4.3, Theorem 4.4
and Theorem 4.5).

2. A generalization of medial triangle theorem

In this section we will extend the medial triangle theorem, that we can
detail as follows (see [5, Theorem 36 c., p. 24]), [1, 1.4, p. 10], [16, p. 73] and
[8, Corollary 1, p. 650]).

Proposition 2.1. a) The segment that connects the midpoints of two
sides of a triangle is half and parallel to the third side.

b) The medians of any triangle pass through the same point that divides
them into two parts of which the one containing the vertex is 2-times
the other.

Consequently, the triangle whose vertices are the midpoints of the sides of
a given triangle is similar to the latter, with ratio 1

2 [5, Theorem 36 c., p. 24].
In the following analysis, the definition of a polygon corresponds to that

adopted in [11, 4.4, p. 70] for quadrilaterals.
We denote by the symbol Pn = A1A2 · · ·An the convex (notintertwined)

polygon with consecutive vertices A1, A2, . . . , An, where the indices 1, 2, . . . , n
are assigned modulo n. Therefore, the polygon Pn can be indicated with any
of the n symbols AiAi+1 · · ·Ai+n−1, with i ∈ {1, 2, . . . , n}.

We call k-subpolygon of Pn = A1A2 · · ·An any k-gon Ai+1Ai+2 · · ·Ai+k,
with i, k ∈ {1, 2, . . . , n}.
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In particular, the (n − 1)-sided polygon Ai+1Ai+2 · · ·Ai+n−1 is defined as
the sub-polygon opposite vertex Ai.

Moreover, we define k-diagonal of Pn every segment of type AiAi+k. Note
that the 1-diagonals and n-diagonals are the sides and vertices of Pn, respec-
tively.

To extend Proposition 2.1 to any n-gon, we define the concept of median
and “median point” of a generic n-gon. Considering a segment as a degener-
ate polygon and assuming the existence and uniqueness of the midpoint of a
segment (see [11, Postulate C-5., p. 104]), we give the following definition, for
any n ≥ 3.

Definition 1. Let Pn = A1A2 · · ·An be an n-sided polygon.

• A median of Pn is a segment joining a vertex Ai of Pn with a median
point of the (n− 1)-subpolygon opposite to Ai if such a median point
exists.

• A median point of Pn is any (possible) intersection point between two
consecutive medians of Pn.

In Figure 3 below, the segment joining the vertex A2 with the median
point M3;4 of the triangle opposite to it, is a median of quadrilateral P4 =
A1A2A3A4.

Figure 3. Definition of median of Pn.

Note that Definition 1 does not use the Euclidean metric, as it refers ex-
clusively to the existence and uniqueness of the midpoint of a segment, which
can be defined through the congruence relation between segments. Therefore,
Definition 1 could be extended to spaces without a metric.

The following theorem extends Proposition 2.1 to any n-sided polygon.
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Theorem 2.2. Let Pn = A1A2 · · ·An be an n-sided polygon. Then,
a) each (n− 1)-subpolygon of Pn has a unique median point.

Moreover, for each i ∈ {1, 2, . . . , n}, the segment that connects the median
points Mi and Mi+1 of the (n− 1)-subpolygons of Pn opposite to vertices
Ai and Ai+1 is parallel to the side AiAi+1 and MiMi+1 = 1

n−1AiAi+1,

b) the medians of Pn pass through the same point that divides them into two
parts, of which the part containing the vertex is (n − 1)-times the other
part.

Figure 4. Segments joining median points opposite to con-
secutive vertices of Pn.

Proof. We proceed by induction on n. For n = 3 the statements a) and b)
are true, for the uniqueness of the midpoint and for Proposition 2.1. Let
Pn = A1A2 · · ·An be an n-sided polygon with n > 3. By the inductive hypoth-
esis, we can assume that the statements a) and b) are true for each k-gon Pk

with 3 ≤ k < n. Therefore, the (n−1)-sided polygon Ai+1Ai+2 · · ·Ai+n−1, op-
posite to the vertex Ai, has exactly one median point Mi. Similarly, the (n−1)-
sided polygon AiAi+2Ai+3 · · ·Ai+n−1, opposite to the vertex Ai+1, has exactly
one median point Mi+1, and the (n − 2)-sided polygon Ai+2Ai+3 · · ·Ai+n−1

has exactly one median point Mi;i+1 (see Figure 4). On the other hand,
the segment AiMi;i+1 is a median of AiAi+2Ai+3 · · ·Ai+n−1, and Mi+1 is
its median point, i.e., by Definition 1, the intersection point of its medi-
ans. Then Mi+1 belongs to the segment AiMi;i+1. In the same way fol-
lows that Mi belongs to Ai+1Mi;i+1. Moreover, from the inductive hypoth-
esis a), we have AiMi+1 = (n− 2)Mi+1Mi;i+1, and, similarly, Ai+1Mi = (n−
2)MiMi;i+1. Hence, the triangles AiAi+1Mi;i+1 and MiMi+1Mi;i+1 are similar.
Then, the segment MiMi+1 is parallel to the side AiAi+1. In addiction, being
AiMi+1 = (n − 2)Mi+1Mi;i+1, we have AiMi;i+1 = AiMi+1 + Mi+1Mi;i+1 =
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(n − 2)Mi+1Mi;i+1 + Mi+1Mi;i+1 = (n − 1)Mi+1Mi;i+1. Therefore, since the
similarity between the previous triangles, we have AiAi+1(n− 1) = Mi+1Mi.
Hence the statement a) is proved.

Moreover, since Mi and Mi+1 are respectively internal to sides Ai+1Mi;i+1

and AiMi;i+1, the segments AiMi and Ai+1Mi+1 meet at a point M internal
to the triangle AiAi+1Mi;i+1. Let points Bi and Bi+1 be symmetric to points
Mi and Mi+1, respectively, through the point M . Then, the quadrilateral
BiBi+1MiMi+1 is a parallelogram, thus BiBi+1 = MiMi+1 = 1

n−1AiAi+1 and

BiBi+1∥MiMi+1∥AiAi+1. Hence, the triangles AiAi+1M and BiBi+1M are
similar with ratio n− 1. Therefore, AiM = (n− 1)BiM = (n− 1)MMi.

Since the median Ai+2Mi+2 intersect the median Ai+iMi+1 at a point M ′

such that Ai+1M
′ = (n− 1)M ′Mi+1, it follows that M

′ coincides with M , and
so for all the successive medians. Hence the statement b) is proved. □

Figure 5. The n-gon of the median points opposite to the
vertices of Pn

Obviously, for n = 3 Theorem 2.2 returns the medial triangle theorem.
Moreover, for point b) of Theorem 2.2, M is internal to AiMi and AiM =

(n − 1)MMi for each i ∈ {1, 2, . . . , n}. Then, each Mi is the image of Ai in
the homothety of centre M and ratio − 1

n−1 . Therefore, the following corollary

holds (see Figure 5).

Corollary 2.3. The median points of the (n− 1)-gons opposite to the vertices
of an arbitrary n-gon form a polygon similar to the initial n-gon, with ratio
1

n−1 .

It seems appropriate to observe that, using a Cartesian coordinates system,
the median point M of Pn = A1A2 · · ·An, can be obtained by calculating
the arithmetic average of the coordinates of the vertices. Indeed, let xi, xM

and xMi
be, respectively, the coordinates of Ai, of the median point M and
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of the median point Mi of the (n − 1)-sub-polygon opposite to Ai. Theorem

2.2 ensures that the vectors
−−−→
AiM and

−−−→
MMi are proportional. Precisely, we

have
−−−→
AiM = (n − 1)

−−−→
MMi, i.e., xM − xi = (n − 1)(xMi

− xM ). Therefore, by

induction on n, nxM = (n− 1)xMi
+ xi = (n− 1)

(
xi+1+xi+2+···+xi+n−1

n−1

)
+ xi,

i.e., xM = 1
n

∑n
j=1 xj .

3. A generalization of Varignon’s theorem

In this section we extend Varignon’s theorem, that we summarize below (see
[17, Corollaire IV, Livre Quartieme, p. 62] and [1, Theorem 3.11, p. 53]).

Theorem 3.1. Let P4 = A1A2A3A4 be a quadrilateral and V (P4) the polygon
obtained by joining the midpoints of its sides. Then,
a) each side of V (P4) is parallel to a 2-diagonal of P4,
b) V (P4) is a parallelogram,
c) the perimeter of V (P4) is equal to the sum of the diagonals of P4.

In addition, the area of V (P4) is half that of the area ofP4 (see, for example
[12, p. 407]).

The points a) and c) of Theorem 3.1 can be easily extended to all n-sided
polygons. Indeed, the parallelism between AiAi+2 and MiMi+1 is obtained by
applying the converse of Thales’ intercept theorem ([13, Theorem 1.1, p. 5]).

Moreover, we have MiMi+1 = AiAi+2

2 for each i ∈ {1, 2, . . . , n} (see Figure 6).
Then, we can state the proposition below, that provides a first extension of
Varignon’s theorem.

Proposition 3.2. Let Pn = A1A2 · · ·An be an n-sided polygon and V2(Pn)
be the polygon obtained by joining the midpoints of the sides of Pn. Then,
a) each side of V2(Pn) is half and parallel to a 2-diagonal of Pn,
b) the perimeter of V2(Pn) is equal to 1

2

∑n
i=1 AiAi+2.

We note that, in the case n = 4, the expression
∑n

i=1 AiAi+2 doubles the sum
of the 2-diagonals. Indeed, since in this case AiAi+2 = Ai+2Ai+4 = Ai+2Ai,
each 2-diagonal of P4 appears twice in the above sum. Therefore, the perimeter
of Varignon parallelogram V2(P4) is equal to the sum of the diagonals of P4

([12, p. 407]).
We can see that this situation occurs only if n = 4. In fact, if the 2-diagonals

AiAi+2 and AjAj+2 of Pn with 1 ≤ i < j ≤ n coincide, we have: i ≡n j + 2
and i+2 ≡n j. By adding a cross, it follows that i+ j ≡n i+ j+4, i.e., 4 ≡n 0.
Then n = 4.

Hence, for n ̸= 4, the expression
∑n

i=1 AiAi+2 corresponds to the sum of
the 2-diagonals of Pn. Therefore, we can add statement c), given below, to
Proposition 3.2.

If n ̸= 4 the perimeter of the V2(Pn) is equals to half the sum of the 2-diagonals
of Pn.
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Figure 6. Relation between the perimeter of V2(Pn) and the
2-diagonals of Pn.

To provide a further generalization of Varignon’s theorem, we need the fol-
lowing definition.

Definition 2. Let k > 1 be a positive integer. Given a 2k-sided polygon
P2k = A1A2 · · ·A2k, we call k-median point of P2k every median point Mk,i

of a k-subpolygon AiAi+1 · · ·Ai+k−1 of P2k. We call the 2k-sided polygon
V (P2k) = Mk,1Mk,2 · · ·Mk,2k the Varignon polygon of P2k.

For example, the Varignon parallelogram V(P4) of a given quadrilateral P4

is also denoted by V (P4).
We can now extend Theorem 3.1 proving, in a synthetic way, the following

result.

Theorem 3.3. Let i and k be positive integers, with i < 2k. Let P2k =
A1A2 · · ·A2k be a 2k-sided polygon and let V (P2k) = Mk,1Mk,2 · · ·Mk,2k the
corresponding Varignon’s polygon. Then,
a) each side Mk,iMk,i+1 of V (P2k) is parallel to the k-diagonal AiAi+k of

P2k; moreover Mk,iMk,i+1 = 1
kAiAi+k,

b) the opposite sides of V (P2k) are equal and parallel in pairs,
c) the perimeter of V (P2k) is

2
k -times the sum of the k-diagonals of P2k.

Proof. The point a) can be obtained by applying to the (k + 1)-sided poly-
gon AiAi+1 · · ·Ai+k the thesis a) of Theorem 2.2. Indeed, Mk,i and Mk,i+1

are, respectively, the median points opposite to the vertices Ai+k and Ai of
AiAi+1 · · ·Ai+k. Then Mk,iMk,i+1∥AiAi+k and Mk,iMk,i+1 = 1

k+1−1AiAi+k

(see Figure 7).
Thus, by substituting i with i + k in the above relationships, we have

Mk,i+kMk,i+k+1∥Ai+kAi+k+k = Ai+kAi and Mk,i+kMk,i+k+1 = 1
kAi+kAi+k+k
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Figure 7. Mk,iMk,i+1 ∥ AiAi+k ∥ Mk,i+kMk,i+k+1,
Mk,iMk,i+1 = 1

kAiAi+k = Mk,i+kMk,i+k+1. The perimeter

of V (P2k) is
2
k times the sum of the k-diagonals of P2k.

= 1
kAi+kAi. ThenMk,iMk,i+1 andMk,i+kMk,i+k+1 are both parallel to AiAi+k

and equal to 1
kAiAi+k. Therefore, point b) is also proved.

Since Ai+kAi+k+k = AiAi+k, the assertion c) follows from
∑2k

i=1 Mk,iMk,i+1

= 1
k

∑2k
i=1 AiAi+k = 1

k

∑k
i=1 AiAi+k + 1

k

∑k
i=1 Ai+kAi+k+k = 2

k

∑k
i=1 AiAi+k.

□

Note that Theorem 3.3 integrates the generalization given by Lord in [9],
establishing a relationship between the perimeters of P2k and its Varignon
polygon.

4. Further generalizations of the medial triangle and Varignon’s
theorem

To provide further generalizations of the medial triangle theorem and Varig-
non’s theorem, we need to extend the median point concept. Therefore we
adopt the following definition.

Definition 3. Let k and n be positive integers, with k < n. Given an n-
sided polygon Pn = A1A2 · · ·An, we call k-median point of Pn every median
point Mk,i of the k-subpolygon AiAi+1 · · ·Ai+k−1 of Pn. Moreover, we call
the n-sided polygon Vk(Pn) = Mk,1Mk,2 · · ·Mk,n the k-medial polygon of Pn.

Note that Definition 3 naturally extends the notation used in Proposition
3.2 and Definition 2. In particular, the medial triangle of a given triangle
P3 is the 2-medial polygon V2(P3), while the Varignon parallelogram of a
quadrilateral P4 is the 2-medial polygon V2(P4) = V (P4). More generally,
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V2(Pn) is the polygon whose vertex are the median points of the sides of Pn,
while V1(Pn) = Pn. Finally, we can denote with Vn(Pn) the n-gon that
degenerate on the median point of Pn.

At this point, we can prove a general theorem that provides a simultaneous
extension of the median triangle theorem and Varignon’s theorem.

Theorem 4.1. Let i, k and n be positive integers, with k, i < n. Let Pn =
A1A2 · · ·An be an n-sided polygon and let Vk(Pn) = Mk,1Mk,2 · · ·Mk,n be a
k-median polygons of Pn. Then,
a) each side Mk,iMk,i+1 of Vk(Pn) is parallel to the k-diagonal AiAi+k of

Pn, moreover Mk,iMk,i+1 = 1
kAiAi+k,

b) each side Mn−k,i+kMn−k,i+k+1 of Vn−k(Pn) is parallel to the side

Mk,iMk,i+1 of Vk(Pn), moreover Mn−k,i+kMn−k,i+k+1=
k

n−kMk,iMk,i+1,

c) the perimeter of Vk(Pn) is equal to 1
k

∑n
i=1 AiAi+k.

Figure 8. Mk,iMk,i+1 ∥ AiAi+k and Mk,iMk,i+1 = 1
kAiAi+1.

Proof. The thesis a) can be obtained by applying to the (k+ 1)-sided polygon
AiAi+1 . . . Ai+k the thesis a) of Theorem 2.2 (see Figure 8). In fact, the points
Mk,i and Mk,i+1 are, respectively, the median points opposite to the vertices
Ai+k and Ai of AiAi+1 · · ·Ai+k. ThenMk,i Mk,i+1 ∥ AiAi+k andMk,iMk,i+1 =

1
k+1−1AiAi+k.

Moreover, substituting k by n − k and i by i + k in the last two relations,
we have

Mn−k,i+kMn−k,i+k+1 ∥ Ai+kAi+k+n−k = Ai+kAi, and

Mn−k,i+kMn−k,i+k+1 =
1

n− k
Ai+kAi+k+n−k =

1

n− k
Ai+kAi.

Therefore, statement b) is also proved. The point c) follows from a). □
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From Theorem 4.1, as the angles of Vk(Pn) and Vn−k(Pn) are equal in
pairs and all the ratios of the pairs of the corresponding sides are equal, the
corollary given below follows (see [4, Definition 1, p. 156]). A similar result was
obtained for a Cartesian coordinates system in [10, Corollary 2, p. 123].

Corollary 4.2. Let Pn be an n-sided polygon. Then, for any integer k, with
1 ≤ k < n the k-medial polygon Vk(Pn) is similar to the (n−k)-medial polygon
Vn−k(Pn), with ratio n−k

k .

Furthermore, as particular cases of Theorem 4.1, we obtain the following
natural generalizations of the statements M and V given in the introduction.
In Figures 9 and 10 we show some examples.

Theorem 4.3. The k-median points of an arbitrary 2k-gon form a polygon for
which the opposite sides are equal and parallel in pairs and the perimeter is 2/k
times the sum of its k-diagonals.

Theorem 4.4. The (k + 1)-median points of an arbitrary (2k + 1)-gon form
a polygon with sides that are k

k+1 -times and parallel to the sides of the polygon

formed by the k-median points of the initial (2k + 1)-gon.

Theorem 4.5. The (k+1)-median points of an arbitrary (2k+1)-gon form a
polygon with sides that are 1

k+1 -times and parallel to the (k + 1)-diagonals of

the initial (2k + 1)-gon.

Note that Varignon’s theorem and its immediate consequences can be ob-
tained from Theorem 4.3 for k = 2. Similarly, the medial triangle theorem can
be obtained from Theorems 4.4 and 4.5 for k = 1.

5. Conclusions

As is well known, a simple consequence of Varignon’s theorem is that the
area of the Varignon parallelogram is half that of the generating quadrilateral
(see, for example [2, Theorem 3.11, p. 53]. [12, p. 407] and [14]). In the previous
pages we have seen that the concept of Varignon polygon of a quadrilateral can
be extended to generic n-gons, by defining the k-medial polygons Vk(Pn). It
has also been shown that the perimeters of Vk(Pn) are related to the sum of the
k-diagonals of Pn. However, other than specifying the relationship between the
areas of similar polygons, previous results provide no information on possible
relationships between the areas of Pn and the areas of its k-medial polygons.
We are interested, in particular, in this relationship for Varignon sub-polygons
Vk(P2k) here. Although such a relationship does not appear to be immediately
evident, it is reasonable to expect the existence of a well defined range within
which the ratio between the aforementioned areas can vary. This unresolved
problem could be the subject of subsequent investigations.
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Figure 9. Each side of V4(P7) is parallel to a side of
V3(P7), precisely, M4,iM4,i+1 ∥ M3,i+4M3,i+5, moreover their
ratio is 3

4 .

Figure 10. The sides of V4(P8) are parallel and equal
in pairs, precisely, M4,iM4,i+1 ∥ M4,i+4M4,i+5. Each side of
V5(P8) is parallel to a side of V3(P8), precisely, M5,iM5,i+1 ∥
M3,i+5M3,i+6, moreover their ratio is 3

5 .
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