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A NOTE ON STATISTICAL MANIFOLDS WITH TORSION

Hwajeong Kim

Abstract. Given a linear connection ∇ and its dual connection ∇∗, we
discuss the situation where ∇ + ∇∗ = 0. We also discuss statistical

manifolds with torsion and give new examples of some type for linear
connections inducing the statistical manifolds with non-zero torsion.

1. Introduction

A metric connection ∇ satisfies ∇g = 0, where g is a given metric tensor on
a manifold M . This means

d⟨X,Y ⟩g = ⟨∇X,Y ⟩g + ⟨X,∇Y ⟩g.
So, the metric g is preserved by the parallel transport with respect to a met-
ric connection ∇. In this case we say that the metric g is preserved by the
connection ∇.

We now consider another case where the metric g is preserved by two given
linear connections ∇, ∇∗, that is

d⟨X,Y ⟩g = ⟨∇X,Y ⟩g + ⟨X,∇∗Y ⟩g.
Then ∇, ∇∗ are called dual connections with respect to the metric g. These
dual connections are introduced by A. P. Norden (under the name “conjugate
connections”), Nagaoka and Amari ([2, 10–12]). The geometrical methods in-
cluding dual connections are first used to define a statistical structure ([8],
1987) and now also in other fields of science. In particular, dually flat manifold
as a dualistic extension of the Euclidean structure is useful in application.

The torsion tensor T∇ of a connection ∇ is defined by

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ],

where [X,Y ] is the Lie-bracket.
Given a metric g, there exists a unique metric connection with zero-torsion.

This connection is the Levi-Civita connection denoted by ∇g. The difference
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of a linear connection ∇ with the Levi-civita connection ∇g is a (2, 1)-tensor
field denoted by A, that is

(1) ∇XY = ∇g
XY +A(X,Y ).

Then some geometric properties of the connection ∇ are induced from the
symmetric or antisymmetric properties of A, for details see Section 2. This
tensor A(X,Y ) is very useful for studying connections, for example, following
Cartan, the types of the torsion tensors of metric connections are classified
algebraically. For details, we refer to [1, 5, 13].

If A(X,Y, Z), as a (3, 0)-tensor, is totally symmetric with respect to X,Y, Z,
then (M, g,∇) is a statistical manifold whose torsion is necessarily zero, for
details we refer to [4]. For torsion-free linear connections ∇, ∇∗, a family of
connections ∇(α) is defined and it is known that (M, g,∇(α)) is a statistical
manifold for all α. In particular, for α = 0, it holds that

(2) ∇(0) =
∇+∇∗

2
= ∇g.

In this article, we consider a general linear connection ∇ = ∇g + A, where
A is an element of ⊗3TM . In Section 3.1, we will see that a linear connection
is actually the sum of a metric connection and a connection which satisfies the
property (2).

A notion of statistical manifolds, which allow non-zero torsion, is introduced
in [7]. In Section 3.2, we discuss these generalized statistical manifolds using
the tensor A(X,Y, Z). Finally in Section 3.3, defining a vectorial tensor A,
we give examples for linear connections of some type that induce statistical
manifolds with non-zero torsion.

2. Preliminaries

2.1. Connections

Let (M, g) be a Riemannian manifold and Γ(M), Γ∗(M) denote the set of
sections of the tangent bundle TM , T ∗M , respectively. Then a linear connec-
tion ∇ can be considered as a map

∇ : Γ(M)⊗ Γ(M) → Γ(M).

A metric connection ∇ is a linear connection, which gives isometries between
tangent spaces by parallel transport, that is

(3) V (g(X,Y )) = g(∇V X,Y ) + g(X,∇V Y ).

The condition (3) is equivalent to ∇g = 0, since for (2, 0)-tensor field g

(∇V g)(X,Y ) = V (g(X,Y ))− g(∇V X,Y )− g(X,∇V Y ).

The Levi-Civita connection, denoted by ∇g, is the unique metric connection
with torsion T = 0. The difference of a linear connection ∇ with the Levi-
Civita connection ∇g is a (2, 1)-tensor field A, that is, for any tangent vector
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fields X,Y ∈ Γ(M),

∇XY = ∇g
XY +A(X,Y ).

The conditions for a linear connection ∇ to be metric or torsion-free or geo-
desics-preserving can be determined by the (2, 1)-tensor A as follows:

• ∇ is torison-free if and only if A(X,Y ) = A(Y,X),
• ∇ is metric if and only if A(X,Y, Z) +A(X,Z, Y ) = 0,
• the geodesics with respect to ∇ are the same ones with respect to ∇g

if and only if A(X,Y ) +A(Y,X) = 0,

where the notation A is also used for the (3, 0)-tensor defined by

A(X,Y, Z) = ⟨A(X,Y ), Z⟩.

2.2. Dual connections

Given a Riemannian manifold (M, g), we now consider the case where the
metric g is preserved by two given linear connections ∇, ∇∗ as follows.

Definition 2.1 (Dual Connections). For a linear connection ∇, the dual con-
nection ∇∗ of ∇ with respect to g is defined by

Z⟨X,Y ⟩g = ⟨∇ZX,Y ⟩g + ⟨X,∇∗
ZY ⟩g.

We now consider the notation (1) and let

∇XY = ∇g +A(X,Y ),(4)

∇∗
XY = ∇g +A∗(X,Y ).(5)

By computation we can easily check the following.

Lemma 2.1. For a linear connection ∇ and its dual connection ∇∗ with ten-
sors A and A∗ respectively, as above (4), (5), it holds that

(6) ⟨A(Z,X), Y ⟩+ ⟨X,A∗(Z, Y )⟩ = A(Z,X, Y ) +A∗(Z, Y,X) = 0.

Remark 2.2. For torsion-free dual connections ∇, ∇∗, it holds

∇ = ∇g +A and ∇∗ = ∇g −A,

where A(X,Y, Z) is totally symmetric with respect to X,Y, Z. This property
is equivalent to the formula

(7) (∇Xg)(Y,Z)− (∇Y g)(X,Z) = 0.

In this case, the manifold (M, g,∇) is a statistical manifold whose torsion is
zero, for details we refer to [4].
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2.3. α-geometry

On a statistical model S endowed with the fisher metric, for two special
linear connections ∇(1) and ∇(−1), a 1-parameter family (∇(α)) is defined by

∇(α) =
1 + α

2
∇(1) +

1− α

2
∇(−1).

Then the statistical model S is also ∇(α)-flat and the connections (∇(α),∇(−α))

are dually coupled for all α . In particular, ∇(0) = ∇(1)+∇(−1)

2 is the Levi-Civita
connection with respect to the fisher metric. For details we refer to [2] and [4].
Now for a linear connection ∇ and its dual connection ∇∗, consider the α-
connection:

∇(α) =
1 + α

2
∇+

1− α

2
∇∗.

Then the following results are known.

Proposition 2.3 ([2, 4]). If the connections ∇ and ∇∗ are torsion-free, the
connection ∇(α) satisfies the formula (7) for all α and ∇(0) coincides with ∇g.

3. Dual connections with torsions

In this section, we will discuss the dual connections in a general situation.
So, given a linear connection ∇ = ∇g+A, the difference tensor A is an element
of ⊗3TM .

3.1. The mean connection with torsion

We now consider the connections ∇ and ∇∗ without the torsion-free condi-
tion.

Lemma 3.1. For dual connections ∇ and ∇∗ with difference (3, 0)-tensors A
and A∗ respectively, the followings are equivalent:

• A+A∗ = 0.
• A is symmetric with respect to the second and the third variables.
• A∗ is symmetric with respect to the second and the third variables.

Proof. The duality of ∇, ∇∗ implies that A(X,Y, Z) + A∗(X,Z, Y ) = 0. So
A+A∗ = 0 if and only if

A(X,Y, Z) = −A∗(X,Y, Z) = A(X,Z, Y ) = −A∗(X,Z, Y ). □

Now let AM and AS denote the set of (3, 0)-tensors A which is skew-
symmetric and symmetric respectively, that is

AM = TM ⊗ Λ2TM = {A ∈ ⊗3TM |A(X,Y, Z) = −A(X,Z, Y )}

with the dimension n2(n−1)
2 , where n is the dimension of M and

AS = TM ⊗ S2TM = {A ∈ ⊗3TM |A(X,Y, Z) = A(X,Z, Y )}

with the dimension n2(n+1)
2 .
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Theorem 3.2. (i) Given a linear connection ∇ = ∇g+A, the connection
∇(0) coincides with ∇g if and only if A ∈ AS.

(ii) A linear connection ∇ can be represented as a direct sum of ∇1 and

∇2, where ∇1 is a metric connection and ∇(0)
2 = ∇g.

Proof. (i) Since ∇(0) = ∇g + A+A∗

2 , ∇(0) = ∇g if and only if

A+A∗ = 0,

which is equivalent to the condition that A ∈ AS , by Lemma 3.1.
(ii) Since ⊗2TM = Λ2TM ⊕ S2TM , it holds that

⊗3TM = {TM ⊗ Λ2TM} ⊕ {TM ⊗ S2TM}
= AM ⊕AS .

We now recall that ∇ is a metric connection for A ∈ AM and ∇(0) = ∇g for
A ∈ AS , respectively. □

Remark 3.3. In fact, it holds that

2∇ = ∇g +A+A∗ +∇g +A−A∗,

where A+A∗ ∈ AM and A−A∗ ∈ AS .

3.2. Statistical manifolds admitting torsion

In [7], the notion of a statistical manifold admitting torsion is introduced.

Definition 3.1 ([3,7,9]). A Riemannian manifold (M, g,∇) is called a statis-
tical manifold admitting torsion if

(8) (∇Xg)(Y,Z)− (∇Y g)(X,Z) = −g(T∇(X,Y ), Z)

for X,Y, Z ∈ Γ(TM), where T∇ is the torsion tensor of ∇.

Using the notation (4), we obtain the following result.

Proposition 3.4. For ∇ = ∇g +A, the formula (8) is equivalent to

(9) A(X,Y, Z) = A(Z, Y,X)

for X,Y, Z ∈ Γ(TM).

Proof. Recall that

(∇Xg)(Y,Z) = X[g(Y,Z)]− g(∇XY, Z)− g(Y,∇XZ), X, Y, Z ∈ Γ(TM).

We can then compute

(∇Xg)(Y,Z)− (∇Y g)(X,Z) + g(T∇(X,Y ), Z)

= g(T∇(X,Y )−∇XY +∇Y X,Z)− g(Y,∇XZ) + g(X,∇Y Z)

+X[g(Y,Z)]− Y [g(X,Z)]

= g(−[X,Y ], Z)− g(Y,∇g
XZ +A(X,Z)) + g(X,∇g

Y Z +A(Y, Z))

+X[g(Y,Z)]− Y [g(X,Z)]
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= g(−[X,Y ], Z) + g(∇g
XY, Z)−A(X,Z, Y )− g(∇g

Y X,Z) +A(Y,Z,X)

= −A(X,Z, Y ) +A(Y, Z,X),

since ∇g is a torsion-free connection. □

The following property of statistical manifolds admitting torsion is known.

Proposition 3.5 ([9]). A manifold (M, g,∇) is a statistical manifold admitting
torsion if and only if its dual connection ∇∗ is a torsion-free connection.

Remark 3.6. The formula (9) implies

A∗(X,Z, Y ) = A∗(Z,X, Y ), X, Y, Z ∈ Γ(TM).

So, Proposition 3.5 follows immediately from Proposition 3.4.

3.3. Examples [A difference tensor A(X,Y ) of vectorial type]

Given a linear connection ∇ = ∇g + A, we know that ∇(0) = ∇+∇∗

2 is a
metric connection. So, generalizing the difference tensor of vectorial type for a
metric connection we can define the vectorial tensor A as follows.

Definition 3.2. For fixed vector fields V1, V2, a difference tensor A(X,Y ) of
vectorial type is defined by

(10) A(X,Y ) = g(X,Y )V1 − g(V2, Y )X

for X,Y, Z ∈ Γ(M).

We then obtain the following results.

Proposition 3.7. Let A be a (2, 1)-tensor of vectorial type with vector fields
V1, V2 as above (10). Then for a linear connection ∇ = ∇g +A, we have

(i) A∗(X,Y ) = g(X,Y )V2 − g(V1, Y )X,
(ii) A ∈ AM if and only if V1 = V2,
(iii) A ∈ AS if and only if V1 = −V2,
(iv) (M, g,∇) is a statistical manifold admitting torsion if and only if V1 =

0.

In particular, for V1 = 0, V2 ̸= 0, we obtain a statistical manifold with non-zero
torsion.

Proof. (i) By (6) and (10), we compute

A∗(X,Y, Z) = −A(X,Z, Y )

= −⟨g(X,Z)V1 − g(V2, Z)X,Y ⟩
= ⟨g(X,Y )V2 − g(V1, Y )X,Z⟩.

So, we conclude that A∗(X,Y ) = g(X,Y )V2 − g(V1, Y )X.
(ii) We compute

A(X,Y, Z) +A(X,Z, Y ) = g(X,Y )g(V1, Z)− g(V2, Y )g(X,Z)

+ g(X,Z)g(V1, Y )− g(V2, Z)g(X,Y )
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= g(X,Y )g(V1 − V2, Z)− g(V2 − V1, Y )g(X,Z).

So, A ∈ AM if and only if V1 = V2.
(iii) By a similar computation,

A(X,Y, Z)−A(X,Z, Y ) = g(X,Y )g(V1 + V2, Z)− g(V2 + V1, Y )g(X,Z).

So, A ∈ AS if and only if V1 = −V2.
(iv) By Proposition 3.4 and Remark 3.6, the formula (8) is satisfied if and

only if

A∗(X,Y ) = A∗(Y,X).

From Proposition 3.7(i) we compute then

A∗(X,Y )−A∗(Y,X) = −g(V1, Y )X + g(V1, X)Y.

So, (M, g,∇) is a statistical manifold admitting torsion if and only if V1 = 0.
In particular, since

(11) T∇(X,Y ) = A(X,Y )−A(Y,X) = −g(V2, Y )X + g(V2, X)Y,

we obtain a statistical manifold with non-zero torsion for V2 ̸= 0. □

Finally we recall that a linear connection ∇, whose torsion satisfies the
formula

T∇(X,Y ) = g(Y, V )X − g(X,V )Y for someV ∈ Γ(TM),

is called a semi-symmetric connection ([6]). So, from the computation (11) we
have the following remark.

Remark 3.8. A linear connection with a difference tensor of vectorial type is
also a semi-symmetric connection.
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