DOI QR코드

DOI QR Code

Constant Acceleration in Fractal Structures with Fractal Dimension D = 2

  • Received : 2023.02.01
  • Accepted : 2023.02.28
  • Published : 2023.03.15

Abstract

An unexplained acceleration on the order of 10-8 cm s-2, which is close to cH, where c is the speed of light and H is the Hubble constant, is detected in gravitationally bound systems of different scales, from the solar system to clusters of galaxies. We found that any test body located inside a fractal structure with fractal dimension D = 2 experiences acceleration of the same order and confirmed the previous work that photons propagating through this structure decrease the frequency owing to gravitational redshift. The acceleration can be directed against the movement of the test body. The fractal distribution of the matter should be at scales of at least hundreds of megaparsecs to a few gigaparsecs for the existence of this acceleration.

Keywords

Acknowledgement

AD was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP14972694).

References

  1. Anderson JD, Campbell JK, Ekelund JE, Ellis J, Jordan JF, Anomalous orbital-energy changes observed during spacecraft flybys of Earth, Phys. Rev. Lett. 100, 091102 (2008). https://doi.org/10.1103/PhysRevLett.100.091102
  2. Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, et al., Study of the anomalous acceleration of Pioneer 10 and 11, Phys. Rev. D 65, 082004 (2002). https://doi.org/10.1103/PhysRevD.65.082004
  3. Baryshev YV, Hierarchical structure of metagalaxy: problem review, Bull. Spec. Astrophys. Obs. 14, 24-43 (1981).
  4. Baryshev YV, On the fractal nature of the large-scale structure of the universe, Astron. Astrophys. Trans. 5, 15-23 (1994). https://doi.org/10.1080/10556799408245848
  5. Baryshev YV, Labini FS, Montuori M, Pietronero L, Facts and ideas in modern cosmology, Vistas Astron. 38, 419-500 (1994). https://doi.org/10.1016/0083-6656(94)90013-2
  6. Chae KH, Bernardi M, Sanchez HD, Sheth RK, On the presence of a universal acceleration scale in elliptical galaxies, Astrophys. J. Lett. 903, L31 (2020). https://doi.org/10.3847/2041-8213/abc2d3
  7. Chan MH, Del Popolo A, The radial acceleration relation in galaxy clusters, Mon. Not. R. Astron. Soc. 492, 5865-5869 (2020). https://doi.org/10.1093/mnras/staa225
  8. Jones BJT, Martinez VJ, Saar E, Trimble V, Scaling laws in the distribution of galaxies, Rev. Mod. Phys. 76, 1211 (2004). https://doi.org/10.1103/RevModPhys.76.1211
  9. Lopez-Corredoira M, Marmet L, Alternative ideas in cosmology, Int. J. Mod. Phys. D 31, 2230014 (2022). https://doi.org/10.1142/S0218271822300142
  10. McGaugh SS, Lelli F, Schombert JM, Radial acceleration relation in rotationally supported galaxies, Phys. Rev. Lett. 117, 201101 (2016). https://doi.org/10.1103/PhysRevLett.117.201101
  11. Milgrom M, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J. 270, 365-370 (1983a). https://doi.org/10.1086/161130
  12. Milgrom M, A modification of the Newtonian dynamics: implications for galaxies, Astrophys. J. 270, 371-383 (1983b). https://doi.org/10.1086/161131
  13. Milgrom M, A modification of the Newtonian dynamics: implications for galaxy systems, Astrophys. J. 270, 384-389 (1983c). https://doi.org/10.1086/161132
  14. Pietronero L, The fractal structure of the universe: correlations of galaxies and clusters and the average mass density, Phys. A. Stat. Mech. Appl. 144, 257-284 (1987). https://doi.org/10.1016/0378-4371(87)90191-9
  15. Raikov AA, Orlov VV, Method of pairwise separations and its astronomical applications, Mon. Not. R. Astron. Soc. 418, 2558-2564 (2011). https://doi.org/10.1111/j.1365-2966.2011.19645.x
  16. Raikov AA, Orlov VV, Gerasim RV, Determination of the fractal dimensionality of large-scale structure with type Ia supernovae by the method of pairwise distances, Astrophysics 57, 287-295 (2014). https://doi.org/10.1007/s10511-014-9334-9
  17. Scarpa R, Marconi G, Carraro G, Falomo R, Villanova S, Testing Newtonian gravity with distant globular clusters: NGC 1851 and NGC 1904, Astron. Astrophys. 525, A148 (2011). https://doi.org/10.1051/0004-6361/201014462
  18. Scrimgeour MI, Davis T, Blake C, James JB, Poole GB, et al., The WiggleZ dark energy survey: the transition to large-scale cosmic homogeneity, Mon. Not. R. Astron. Soc. 425, 116-134 (2012). https://doi.org/10.1111/j.1365-2966.2012.21402.x
  19. Shan P, Lemos P, Lahav O, A buyer's guide to the Hubble constant, Astron. Astrophys. Rev. 29, A9 (2021). https://doi.org/10.1007/s00159-021-00137-4
  20. Shirokov SI, Raikov AA, Baryshev YV, Spatial distribution of gamma-ray burst sources, Astrophysics 60, 484-496 (2017). https://doi.org/10.1007/s10511-017-9500-y
  21. Teles S, Lopes AR, Ribeiro MB, Fractal analysis of the UltraVISTA galaxy survey, Phys. Lett. B 813, 136034 (2021). https://doi.org/10.1016/j.physletb.2020.136034
  22. Teles S, Lopes AR, Ribeiro MB, Galaxy distributions as fractal systems, Eur. Phys. J. C 82, 896 (2022). https://doi.org/10.1140/epjc/s10052-022-10866-0
  23. Wertz JR, A Newtonian big-bang hierarchical cosmological model, Astrophys. J. 164, 227 (1971). https://doi.org/10.1086/150834