DOI QR코드

DOI QR Code

Novel asymmetric duty modulation for DAB converters to improve light load efficiency

  • Feng Wang (The State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University) ;
  • Xinyu Cui (The State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University) ;
  • Fang Zhuo (The State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University) ;
  • Jiachen Tian (The State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University) ;
  • Zhi Zheng (The State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University) ;
  • Ruixin Xu (The State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University)
  • Received : 2022.06.16
  • Accepted : 2022.11.14
  • Published : 2023.04.20

Abstract

In a DC distribution network, the solid-state transformer (SST) and energy storage systems require an isolated bidirectional DC-DC converter (IBDC). Among the many IBDCs, the dual active bridge (DAB) converter has been widely studied due to its advantages in terms of high power density and high efficiency. The traditional control strategy for DAB is phase shift control. However, when the primary and secondary side voltages do not match, the soft-switching characteristic and increasing current in the phase shift control affect the application of DAB in scenarios involving input and output voltage changes. To improve the above-mentioned defects, a novel asymmetric duty modulation (ADM) control is proposed in this paper. Among the various multi-variable ADM controls, the two-variable ADM control is simple, but its current is higher under light loads. To improve this defect, this paper introduces trapezoidal modulation (TZM) control proposed for phase shift control into ADM to form a similar TZM (STZM) control corresponding to TZM control. This paper first expounds the basic principle of STZM control. On this basis, its basic characteristics are researched. With current stress as the optimization goal, an optimal STZM (OSTZM) control scheme with minimum current stress is proposed, and the effectiveness of the theoretical analysis is verified on the experimental bench. The result shows that STZM control can improve efficiency under light loads by reducing the current and ensuring full ZVS.

Keywords

Acknowledgement

This work was supported by Research on Basic Calculation and Control Technology of AC/DC Flexible Distribution Network Based on Energy Router (5400-202055115A-0-0-00).

References

  1. Qin, H., Kimball, J.W.: Closed-loop control of DC-DC dual-active-bridge converters driving single-phase inverters. IEEE Trans. Power Electron. 29(2), 1006-1017 (2014). https://doi.org/10.1109/TPEL.2013.2257859 
  2. Choi, H.-J., Seo, B.-G., Ryu, M.-H., Cho, Y.-P., Jung, J.-H.: Effective magnetic component design of three-phase dual-active-bridge converter for LVDC distribution system. IEEE Trans. Ind. Electron. 68(3), 1828-1840 (2021). https://doi.org/10.1109/TIE.2020.2972462 
  3. Engel, S.P., Stieneker, M., Soltau, N., Rabiee, S., Stagge, H., De Doncker, R.W.: Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids. IEEE Trans. Power Electron. 30(1), 124-137 (2015). https://doi.org/10.1109/TPEL.2014.2310656 
  4. Shi, H., Wen, H., Chen, G., Bu, Q., Chu, G., Zhu, Y.: Multiple-fault-tolerant dual active bridge converter for DC distribution system. IEEE Trans. Power Electron. 37(2), 1748-1760 (2022). https://doi.org/10.1109/TPEL.2021.3106508 
  5. Zhao, B., Song, Q., Liu, W., Sun, Y.: Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091-4106 (2014). https://doi.org/10.1109/TPEL.2013.2289913 
  6. Kheraluwala, M.N., Gascoigne, R.W., Divan, D.M., Baumann, E.D.: Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Trans. Ind. Appl. 28(6), 1294-1301 (1992). https://doi.org/10.1109/28.175280 
  7. Zhao, B., Song, Q., Liu, W., Sun, W.: Current-stress-optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control. IEEE Trans. Ind. Electron. 60(10), 4458-4467 (2013). https://doi.org/10.1109/TIE.2012.2210374 
  8. Zhao, B., Song, Q., Liu, W.: Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control. IEEE Trans. Power Electron. 27(9), 4172-4176 (2012). https://doi.org/10.1109/TPEL.2012.2189586 
  9. Oggier, G., Garcia, G.O., Oliva, A.R.: Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range. IEEE Trans. Power Electron. 26(4), 1228-1236 (2011). https://doi.org/10.1109/TPEL.2010.2072966 
  10. Xu, G., Li, L., Chen, X., Liu, Y., Sun, Y., Su, M.: Optimized EPS control to achieve full load range ZVS with seamless transition for dual active bridge converters. IEEE Trans. Ind. Electron. 68(9), 8379-8390 (2021). https://doi.org/10.1109/TIE.2020.3014562 
  11. Li, L., Xu, G., Xiong, W., Liu, D., Su, M.: An optimized DPS control for dual-active-bridge converters to secure full-load-range ZVS with low current stress. IEEE Trans. Transp. Electr. 8(1), 1389-1400 (2022). https://doi.org/10.1109/TTE.2021.3106130 
  12. Tong, A., Hang, L., Li, G., Jiang, X., Gao, S.: Modeling and analysis of a dual-active-bridge-isolated bidirectional DC/DC converter to minimize RMS current with whole operating range. IEEE Trans. Power Electron. 33(6), 5302-5316 (2018). https://doi.org/10.1109/TPEL.2017.2692276 
  13. Zhao, C., Xu, D., Fan, F.: A PWM plus phase-shift control bidirectional DC-DC converter. In: Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003, vol. 2. APEC'03, 2003, pp. 641-647. https://doi.org/10.1109/APEC.2003.1179282 
  14. Ngo, T., Won, J., Nam, K.: A single-phase bidirectional dual active half-bridge converter. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 1127-1133. https://doi.org/10.1109/APEC.2012.6165960 
  15. Kim, J., Jeong, I., Nam, K.: Asymmetric duty control of the dual-active-bridge DC/DC converter for single-phase distributed generators. IEEE Energy Convers. Congr. Expos. 2009, 75-82 (2009). https://doi.org/10.1109/ECCE.2009.5316120 
  16. Chakraborty, S., Chattopadhyay, S.: Minimum-RMS-current operation of asymmetric dual active half-bridge converters with and without ZVS. IEEE Trans. Power Electron. 32(7), 5132-5145 (2017). https://doi.org/10.1109/TPEL.2016.2613874 
  17. Chakraborty, S., Chattopadhyay, S.: Fully ZVS, minimum RMS current operation of the dual-active half-bridge converter using closed-loop three-degree-of-freedom control. IEEE Trans. Power Electron. 33(12), 10188-10199 (2018). https://doi.org/10.1109/TPEL.2018.2811640 
  18. Huang, J., Li, Z., Shi, L., Wang, Y., Zhu, J.: Optimized modulation and dynamic control of a three-phase dual active bridge converter with variable duty cycles. IEEE Trans. Power Electron. 34(3), 2856-2873 (2019). https://doi.org/10.1109/TPEL.2018.2842021 
  19. Hu, J., Yang, Z., Cui, S., De Doncker, R.W.: Closed-form asymmetrical duty-cycle control to extend the soft-switching range of three-phase dual-active-bridge converters. IEEE Trans. Power Electron. 36(8), 9609-9622 (2021). https://doi.org/10.1109/TPEL.2021.3055369 
  20. Mou, D., et al.: Optimal asymmetric duty modulation to minimize inductor peak-to-peak current for dual active bridge DC-DC converter. IEEE Trans. Power Electron. 36(4), 4572-4584 (2021). https://doi.org/10.1109/TPEL.2020.3025120 
  21. Li, J., Luo, Q., Mou, D., Wei, Y., Sun, P., Du, X.: A hybrid five-variable modulation scheme for dual-active-bridge converter with minimal RMS current. IEEE Trans. Ind Electron. 69(1), 336-346 (2022). https://doi.org/10.1109/TIE.2020.3048278 
  22. Mou, D., Luo, Q., Li, J., Wei, Y., Sun, P.: Five-degree-of-freedom modulation scheme for dual active bridge DC-DC converter. IEEE Trans. Power Electron. 36(9), 10584-10601 (2021). https://doi.org/10.1109/TPEL.2021.3056800 
  23. Cui, X., et al.: A novel asymmetric duty modulation control of dual-active-bridge for LVDC applications. In: 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 2021, pp. 110-117. https://doi.org/10.1109/ICPSAsia52756.2021.9621571 
  24. Chen, G., Chen, Z., Chen, Y., Feng, C., Zhu, X.: Asymmetric phase-shift modulation strategy of DAB converters for improved light-load efficiency. IEEE Trans. Power Electron. 37(8), 9104-9113 (2022). https://doi.org/10.1109/TPEL.2022.3157375 
  25. Tian, J., Wang, F., Zhuo, F., Cui, X., Yang, D.: An optimal primary-side duty modulation scheme with minimum peak-to-peak current stress for DAB-based EV applications. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2022.3206698 
  26. Jafari, A., Nikoo, M.S., Karakaya, F., Matioli, E.: Enhanced DAB for efficiency preservation using adjustable-tap high-frequency transformer. IEEE Trans. Power Electron. 35(7), 6673-6677 (2020). https://doi.org/10.1109/TPEL.2019.2958632 
  27. Chen, X., Xu, G., Han, H., Liu, D., Sun, Y., Su, M.: Light-load efficiency enhancement of high-frequency dual-active-bridge converter under SPS control. IEEE Trans. Ind. Electron. 68(12), 12941-12946 (2021). https://doi.org/10.1109/TIE.2020.3044803 
  28. Taylor, A., Liu, G., Bai, H., Brown, A., Johnson, P.M., McAmmond, M.: Multiple-phase-shift control for a dual active bridge to secure zero-voltage switching and enhance light-load performance. IEEE Trans. Power Electron. 33(6), 4584-4588 (2018). https://doi.org/10.1109/TPEL.2017.2769638 
  29. Mahdavifard, M., Mazloum, N., Zahin, F., KhakparvarYazdi, A., Abasian, A., Khajehoddin, S.A.: An Asymmetrical DAB converter modulation and control systems to extend the ZVS range and improve efficiency. IEEE Trans. Power Electron. 37(10), 12774-12792 (2022). https://doi.org/10.1109/TPEL.2022.3177401 
  30. Schibli, N.: Symmetrical multilevel converters with two quadrant dc-dc feeding. Ph. D. dissertation, Ecole Polytechnique Federale de Lausanne (EPFL), Suisse, Switzerland, (2000) 
  31. Krismer, F., Round, S., Kolar, J.W.: Performance optimization of a high current dual active bridge with a wide operating voltage range. In: 2006 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1-7. https://doi.org/10.1109/pesc.2006.1712096 
  32. Wang, Y., de Haan, S.W.H., Ferreira, J.A.: Optimal operating ranges of three modulation methods in dual active bridge converters. In: 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 1397-1401. https://doi.org/10.1109/IPEMC.2009.5157602 
  33. Krismer, F., Kolar, J.W.: Efficiency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans. Ind. Electron. 59(7), 2745-2760 (2012). https://doi.org/10.1109/TIE.2011.2112312