DOI QR코드

DOI QR Code

KCS 선형의 모형시험 및 CFD 해석을 통한 Newman-Sharma 파형저항 추정법의 검토

Review of Newman-Sharma Wave Pattern Resistance Analysis Using Experimental and Computational Model Tests of KCS

  • 김명수 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김민창 (충남대학교 선박해양공학과) ;
  • 서정화 (충남대학교 선박해양공학과) ;
  • 석우찬 (부경대학교 조선해양시스템공학과)
  • Myoungsoo Kim (Korea Research Institute of Ships and Ocean Engineering) ;
  • Minchang Kim (Department of Naval Architecture and Ocean Engineering, Chungnam National University) ;
  • Jeonghwa Seo (Department of Naval Architecture and Ocean Engineering, Chungnam National University) ;
  • Woochan Seok (Department of Naval Architecture and Marine System Engineering, Pukyong National University)
  • 투고 : 2022.12.08
  • 심사 : 2023.02.23
  • 발행 : 2023.04.20

초록

The present study aims to review the wave pattern resistance analysis method suggested by the International Towing Tank Conference. From the experimental database of a container carrier ship model, the wave pattern measurement and resistance test results are utilized. The wave pattern resistance at the design Froude number is obtained to be compared with the wave making resistance of experiments. Wave pattern resistance is lower than wave making resistance by 1978 ITTC and uniform regardless of transverse location of wave cut. The method is also applied to the wave height field by Computational Fluid Dynamics (CFD) analyses with Froude number variation. Although numerical damping suppressed waves in downstream, waves around the hull and wave pattern resistance are properly predicted.

키워드

과제정보

본 연구는 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었습니다.

참고문헌

  1. Calisal, S.M., Sireli, M.E. and Tan, J., 2009. A direct measurement of wave resistance by the measurement of wave height on a surface patch. Journal of Ship Research, 53(3), pp.170-177. https://doi.org/10.5957/jsr.2009.53.3.170
  2. Choi, H.-J., Seo, K.-C., Kim, B.-E. and Chun, H.-H., 2003. Development of an optimum hull form for a container ship with minimum wave resistance. Journal of the Society of Naval Architects of Korea, 40(4), pp.8-15. https://doi.org/10.3744/SNAK.2003.40.4.008
  3. Dumez, F.-X. and Cordier, S., 1997. Accuracy of wave pattern analysis methods in towing tanks. 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 24-28 June 1996.
  4. Havelock, T.H., 1932. The Theory of Wave Resistance. In: Royal Society, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Nov. 1, 1932, Vol. 138, No. 835 pp. 339-348
  5. Hino, T., Stern, F., Larsson, L., Visonneau, M., Hirata, N. and Kim, J., 2020. Numerical Ship Hydrodynamics: An Assessment of the Tokyo 2015 Workshop. Springer Nature, Cham, Switzerland.
  6. International Towing Tank Conference, 2021a. Resistance Tests. ITTC-Recommended Procedures and Guidelines 7.5-02-02-01.
  7. International Towing Tank Conference, 2021b. Wave Profile Measurement and Wave Pattern Resistance Analysis. ITTC-Recommended Procedures and Guidelines 7.5-02-02-04.
  8. Kang, K.J. and Kim, E.C., 1989. A Study on the improvement of fore-body shape considering breaking wave phenomena. Journal of the Society of Naval Architects of Korea, 26(2), pp.1-12.
  9. Kang, S.H. and Lee, Y.G., 1981. Study on the wave-pattern analysis by longitudinal cut method. Journal of the Society of Naval Architects of Korea, 18(1), pp.9-18.
  10. Kang, D.-S., Yu, J.-W. and Lee, Y.-G., 2007. A study on the hull form design with minimum resistance for domestic coastal fishing boats. Journal of the Society of Naval Architects of Korea, 44(4), pp.349-359. https://doi.org/10.3744/SNAK.2007.44.4.349
  11. Kashiwagi, M., 2013. Hydrodynamic study on added resistance using unsteady wave analysis. Journal of Ship Research, 57(4), pp.220-240. https://doi.org/10.5957/JOSR.57.4.130036
  12. Kim, D.-H., Kim, W.-J. and Van, S.-H., 2000. Analysis of the nonlinear wave-making problem of practical hull forms using panel method, Journal of the Society of Naval Architects of Korea, 37(4), pp.1-10.
  13. Kim, W.J., 1985. Wave-making Resistance of a Parabolic Hull. Master's Thesis, Seoul National University, Seoul, Korea.
  14. Kim, W.J., Van, S.H. and Kim, D.H., 2001. Measurement of flows around modern commercial ship models. Experiments in Fluids, 31, pp.567-578. https://doi.org/10.1007/s003480100332
  15. Lalli, F., Di Felice, F., Esposito, P.G., Moriconi, A. and Piscopia, R., 2000. Longitudinal cut method revisited: a survey on main error sources. Journal of Ship Research, 44(2), pp. 120-139. https://doi.org/10.5957/jsr.2000.44.2.120
  16. Lee, Y.-S. and Choi, Y.-B., 2009. Hull form optimization based on from parameter design. Journal of the Society of Naval Architects of Korea, 46(6), pp.562-568. https://doi.org/10.3744/SNAK.2009.46.6.562
  17. Min, K.-S. and Kang, S.-H., 2010. Study on the form factor and hull-scale ship resistance prediction method. Journal of Marine Science and Technology, 15(2), pp.108-118. https://doi.org/10.1007/s00773-009-0077-y
  18. Moran, D.D. and Landweber, L., 1972, A longitudinal-cut method for determining wavemaking resistance. Journal of Ship Reserach, 16(1), pp.21-40. https://doi.org/10.5957/jsr.1972.16.1.21
  19. Park, J.H., Choi, J.-E. and Chun, H.-H., 2015. Hull-form optimization of KSUEZMAX to enhance resistance performance. International Journal of Naval Architecture and Ocean Engineering, 7(1), pp.100-114. https://doi.org/10.1515/ijnaoe-2015-0008
  20. Seo, K.-C., Atlar, M., Kim, H.-J. and Chun, H.-H., 2009. Minimization of wave-making resistance for "inclined keel' containership. Journal of the Society of Naval Architects of Korea, 46(2), pp.97-104. https://doi.org/10.3744/SNAK.2009.46.2.097
  21. Seo, J., Park, J., Go, S.C., Rhee, S.H. and Yoo, J., 2021. Application of Monte Carlo simulations to uncertainty assessment of ship poweirng prediction by the 1978 ITTC method. International Journal of Naval Architecture and Ocean Engineering, 13, pp.292-305. https://doi.org/10.1016/j.ijnaoe.2021.03.006
  22. Yum, J.-G., Kang, K.-J., Lee, Y.-Y., Lee, C.-J. and Ok, K.-D., 2018. A study on the basic design for platform support vessel (PSV) and hull form development for enhance-ment of resistance & propulsion performance. Journal of the Society of Naval Architects of Korea, 55(3), pp.196-204. https://doi.org/10.3744/SNAK.2018.55.3.196
  23. Yeo, H., Seok, W., Shin, S., Huh, Y. C., Jung, B. C., Myung, C. S. and Rhee, S. H. (2019). Computational analysis of the performance of a vertical axis turbine in a water pipe. Energies, 12(20), 3998.