DOI QR코드

DOI QR Code

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Received : 2023.02.11
  • Accepted : 2023.04.21
  • Published : 2023.04.30

Abstract

PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.

Keywords

Acknowledgement

This study was supported by the University of Sao Paulo unified scholarship program (Grant number: 2021/859).

References

  1. da Silva Barboza A, Fang LK, Ribeiro JS, Cuevas-Suarez CE, Moraes RR, Lund RG. Physicomechanical, optical, and antifungal properties of polymethyl methacrylate modified with metal methacrylate monomers. J Prosthet Dent 2021;125:706.e1-6. https://doi.org/10.1016/j.prosdent.2020.12.039
  2. Vilela Teixeira AB, Dos Reis AC. Influence of parameters and characteristics of complete denture bases fabricated by 3D printing on evaluated properties: a scoping review. Int J Prosthodont 2021 May 17. (Epub ahead of print)
  3. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing - the fututre in dental care for elderly edentulous patients? J Dent 2017;59:68-77. https://doi.org/10.1016/j.jdent.2017.02.012
  4. AlMojel N, AbdulAzees PA, Lamb EM, Amaechi BT. Determining growth inhibition of Candida albicans biofilm on denture materials after application of an organoselenium-containing dental sealant. J Prosthet Dent 2023;129:205-12. https://doi.org/10.1016/j.prosdent.2021.04.015
  5. Lee HL, Wang RS, Hsu YC, Chuang CC, Chan HR, Chiu HC, Wang YB, Chen KY, Fu E. Antifungal effect of tissue conditioners containing poly(acryloyloxyethyltrimethyl ammonium chloride)-grafted chitosan on Candida albicans growth in vitro. J Dent Sci 2018;13:160-6. https://doi.org/10.1016/j.jds.2017.06.004
  6. Iqbal Z, Zafar MS. Role of antifungal medicaments added to tissue conditioners: A systematic review. J Prosthodont Res 2016;60:231-9. https://doi.org/10.1016/j.jpor.2016.03.006
  7. Muttagi S, Subramanya JK. Effect of incorporating seed oils on the antifungal property, surface roughness, wettability, weight change, and glucose sorption of a soft liner. J Prosthet Dent 2017;117:178-85. https://doi.org/10.1016/j.prosdent.2016.05.010
  8. Hotta J, Garlet GP, Cestari TM, Lima JFM, Porto VC, Urban VM, Neppelenbroek KH. In vivo biocompatibility of an interim denture resilient liner containing antifungal drugs. J Prosthet Dent 2019;121:135-42. https://doi.org/10.1016/j.prosdent.2018.02.005
  9. Morse DJ, Wilson MJ, Wei X, Bradshaw DJ, Lewis MAO, Williams DW. Modulation of Candida albicans virulence in in vitro biofilms by oral bacteria. Lett Appl Microbiol 2019;68:337-43. https://doi.org/10.1111/lam.13145
  10. Altinci P, Mutluay M, Soderling E, Tezvergil-Mutluay A. Antimicrobial efficacy and mechanical properties of BAC-modified hard and soft denture liners. Odontology 2018;106:83-9. https://doi.org/10.1007/s10266-017-0303-8
  11. Marra J, Paleari AG, Rodriguez LS, Leite AR, Pero AC, Compagnoni MA. Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation. J Appl Oral Sci 2012;20:643-8. https://doi.org/10.1590/S1678-77572012000600009
  12. Deyab MH, Awady BE, Bakir NG. Is immersion in mint oil or apple vinegar solution a valid antifungal approach for acrylic soft liners? Future Dent J 2018;4:302-7. https://doi.org/10.1016/j.fdj.2018.05.002
  13. Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine 2012;8:935-40. https://doi.org/10.1016/j.nano.2011.11.012
  14. de Campos MR, Botelho AL, Dos Reis AC. Nanostructured silver vanadate decorated with silver particles and their applicability in dental materials: A scope review. Heliyon 2021;7:e07168.
  15. Teixeira ABV, Moreira NCS, Takahashi CS, Schiavon MA, Alves OL, Reis AC. Cytotoxic and genotoxic effects in human gingival fibroblast and ions release of endodontic sealers incorporated with nanostructured silver vanadate. J Biomed Mater Res B Appl Biomater 2021;109:1380-8. https://doi.org/10.1002/jbm.b.34798
  16. de Castro DT, Teixeira ABV, do Nascimento C, Alves OL, de Souza Santos E, Agnelli JAM, Dos Reis AC. Comparison of oral microbiome profile of polymers modified with silver and vanadium base nanomaterial by next-generation sequencing. Odontology 2021;109:605-14. https://doi.org/10.1007/s10266-020-00582-0
  17. Vidal CL, Ferreira I, Ferreira PS, Valente MLC, Teixeira ABV, Reis AC. Incorporation of hybrid nanomaterial in dental porcelains: antimicrobial, chemical, and mechanical properties. Antibiotics 2021;10:98.
  18. de Castro DT, Kreve S, Oliveira VC, Alves OL, Dos Reis AC. Development of an impression material with antimicrobial properties for dental application. J Prosthodont 2019;28:906-12. https://doi.org/10.1111/jopr.13100
  19. Kreve S, Oliveira VC, Bachmann L, Alves OL, Reis ACD. Influence of AgVO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner. Sci Rep 2019;9:11889.
  20. Vilela Teixeira AB, Larissa Vidal C, Albiasetti T, Tornavoi de Castro D, Candido Dos Reis A. Influence of adding nanoparticles of silver vanadate on antibacterial effect and physicochemical properties of endodontic sealers. Iran Endod J 2019;14:7-13.
  21. Vilela Teixeira AB, de Carvalho Honorato Silva C, Alves OL, Candido Dos Reis A. Endodontic sealers modified with silver vanadate: antibacterial, compositional, and setting time evaluation. Biomed Res Int 2019; 2019:4676354.
  22. de Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, Alves OL, Holtz RD, dos Reis AC. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent 2016;115:238-46. https://doi.org/10.1016/j.prosdent.2015.09.003
  23. de Castro DT, Valente ML, da Silva CH, Watanabe E, Siqueira RL, Schiavon MA, Alves OL, Dos Reis AC. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Arch Oral Biol 2016;67:46-53. https://doi.org/10.1016/j.archoralbio.2016.03.002
  24. Castro DT, Holtz RD, Alves OL, Watanabe E, Valente ML, Silva CH, Reis AC. Development of a novel resin with antimicrobial properties for dental application. J Appl Oral Sci 2014;22:442-9. https://doi.org/10.1590/1678-775720130539
  25. Lopes Vasconcelos GL, Curylofo PA, Targa Coimbra FC, de Cassia Oliveira V, Macedo AP, de Freitas Oliveira Paranhos H, Pagnano VO. In vitro antimicrobial activity of effervescent denture tablets on the components of removable partial dentures. Int J Prosthodont 2020;33:315-20. https://doi.org/10.11607/ijp.6436
  26. de Castro DT, Valente MLDC, Aires CP, Alves OL, Dos Reis AC. Elemental ion release and cytotoxicity of antimicrobial acrylic resins incorporated with nanomaterial. Gerodontology 2017;34:320-25. https://doi.org/10.1111/ger.12267
  27. Marino PJ, Wise MP, Smith A, Marchesi JR, Riggio MP, Lewis MAO, Williams DW. Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients. J Crit Care 2017;39:149-55. https://doi.org/10.1016/j.jcrc.2017.02.020
  28. Quishida CC, Mima EG, Dovigo LN, Jorge JH, Bagnato VS, Pavarina AC. Photodynamic inactivation of a multispecies biofilm using Photodithazine() and LED light after one and three successive applications. Lasers Med Sci 2015;30:2303-12. https://doi.org/10.1007/s10103-015-1811-9
  29. Pereira-Cenci T, Deng DM, Kraneveld EA, Manders EM, Del Bel Cury AA, Ten Cate JM, Crielaard W. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces. Arch Oral Biol 2008;53:755-64. https://doi.org/10.1016/j.archoralbio.2008.02.015
  30. Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJA. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health 2021;14:324-30. https://doi.org/10.1016/j.jiph.2020.12.016
  31. Darwish RM, AlKawareek MY, Bulatova NR, Alkilany AM. Silver nanoparticles, a promising treatment against clinically important fluconazole-resistant Candida glabrata. Lett Appl Microbiol 2021;73:718-24. https://doi.org/10.1111/lam.13560
  32. Lee JH, El-Fiqi A, Jo JK, Kim DA, Kim SC, Jun SK, Kim HW, Lee HH. Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 2016;32:1564-74. https://doi.org/10.1016/j.dental.2016.09.001
  33. Kim KI, Kim DA, Patel KD, Shin US, Kim HW, Lee JH, Lee HH. Carbon nanotube incorporation in PMMA toprevent microbial adhesion. Sci Rep 2019;9:4921.
  34. Noda M, Sakai Y, Sakaguchi Y, Hayashi N. Evaluation of low-temperature sterilization using hydrogen peroxide gas containing peracetic acid. Biocontrol Sci 2020;25:185-91. https://doi.org/10.4265/bio.25.185
  35. McEvoy B, Rowan NJ. Terminal sterilization of medical devices using vaporized hydrogen peroxide: a review of current methods and emerging opportunities. J Appl Microbiol 2019;127:1403-20. https://doi.org/10.1111/jam.14412
  36. de Sousa-Lima RX, de Lima JFM, Silva de Azevedo LJ, de Freitas Chaves LV, Alonso RCB, Borges BCD. Surface morphological and physical characterizations of glass ionomer cements after sterilization processes. Microsc Res Tech 2018;81:1208-13. https://doi.org/10.1002/jemt.23119
  37. Tong W, Tran PA, Turnley AM, Aramesh M, Prawer S, Brandt M, Fox K. The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications. Mater Sci Eng C Mater Biol Appl 2016;61:324-32. https://doi.org/10.1016/j.msec.2015.12.041
  38. Junkar I, Kulkarni M, Drasler B, Rugelj N, Mazare A, Flasker A, Drobne D, Humpolicek P, Resnik M, Schmuki P, Mozetic M, Iglic A. Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 2016;109:79-86. https://doi.org/10.1016/j.bioelechem.2016.02.001
  39. Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al-Thobity AM, Khan SQ, Akhtar S, Ateeq IS, Helal MA, Al-Harbi FA. Strength and surface properties of a 3D-printed denture base polymer. J Prosthodont 2022;31:412-8. https://doi.org/10.1111/jopr.13413
  40. Shim JS, Kim JE, Jeong SH, Choi YJ, Ryu JJ. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent 2020;124:468-75. https://doi.org/10.1016/j.prosdent.2019.05.034
  41. You SM, You SG, Kang SY, Bae SY, Kim JH. Evaluation of the accuracy (trueness and precision) of a maxillary trial denture according to the layer thickness: An in vitro study. J Prosthet Dent 2021;125:139-45. https://doi.org/10.1016/j.prosdent.2019.12.014
  42. Alzayyat ST, Almutiri GA, Aljandan JK, Algarzai RM, Khan SQ, Akhtar S, Ateeq IS, Gad MM. Effects of SiO2 incorporation on the flexural properties of a denture base resin: an in vitro study. Eur J Dent 2022;16:188-94. https://doi.org/10.1055/s-0041-1732806
  43. Gad MM, Ali MS, Al-Thobity AM, Al-Dulaijan YA, Zayat ME, Emam AM, Akhtar S, Khan SQ, Al-Harbi FA, Fouda SM. Polymethylmethacrylate incorporating nanodiamonds for denture repair: in vitro study on the mechanical properties. Eur J Dent 2022;16:286-95. https://doi.org/10.1055/s-0041-1735792
  44. Ajaj-Alkordy NM, Alsaadi MH. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins. Saudi Dent J 2014;26:15-8. https://doi.org/10.1016/j.sdentj.2013.12.005
  45. Perea-Lowery L, Gibreel M, Vallittu PK, Lassila LV. 3D-printed vs. heat-polymerizing and autopolymerizing denture base acrylic resins. Mater (Basel) 2021; 14:5781.
  46. Srinivasan M, Kamnoedboon P, McKenna G, Angst L, Schimmel M, Ozcan M, Muller F. CAD-CAM removable complete dentures: A systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes. J Dent 2021;113:103777.
  47. Prpic V, Schauperl Z, Catic A, Dulcic N, Cimic S. Comparison of mechanical properties of 3D-printed, CAD/ CAM, and conventional denture base materials. J Prosthodont 2020;29:524-8. https://doi.org/10.1111/jopr.13175
  48. Choi JJE, Uy CE, Ramani RS, Waddell JN. Evaluation of surface roughness, hardness and elastic modulus of nanoparticle containing light-polymerized denture glaze materials. J Mech Behav Biomed Mater 2020;103:103601.