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Centrosome abnormalities are hallmarks of human cancers. Struc-
tural and numerical centrosome abnormalities correlate with 
tumor aggressiveness and poor prognosis, implicating that cen-
trosome abnormalities could be a cause of tumorigenesis. Since 
Boveri made his pioneering recognition of the potential causal 
link between centrosome abnormalities and cancer more than 
a century ago, there has been significant progress in the field. 
Here, we review recent advances in the understanding of the 
causes and consequences of centrosome abnormalities and their 
connection to cancers. Centrosome abnormalities can drive the 
initiation and progression of cancers in multiple ways. For exam-
ple, they can generate chromosome instability through abnormal 
mitosis, accelerating cancer genome evolution. Remarkably, it 
is becoming clear that the mechanisms by which centrosome 
abnormalities promote several steps of tumorigenesis are far be-
yond what Boveri had initially envisioned. We highlight various 
cancer-promoting mechanisms exerted by cells with centrosome 
abnormalities and how these cells possessing oncogenic poten-
tial can be monitored. [BMB Reports 2023; 56(4): 216-224]

INTRODUCTION

The centrosome, the major microtubule organizing center 
(MTOC) in animal cells, plays critical roles in controlling var-
ious cellular processes, including cell shape, cell polarity, and 
mitosis (1-3). It is composed of a pair of centrioles embedded 
in an electron-dense amorphous protein matrix called the peri-
centriolar material (PCM), which is required for microtubule 
nucleation. Centrioles duplicate once per cell cycle during the 
S phase in a manner similar to DNA replication. This tight 
control of centrosome numbers allows normal cells to enter 
mitosis with two centrosomes, ensuring bipolar spindle forma-
tion, which leads to two daughter cells, each inheriting one 

centrosome in the interphase. 
Deviations in any of these events may lead to centrosome 

anomalies that are linked to several diseases. Notably, centro-
some aberrations are hallmarks of human cancers and are 
commonly found in many solid and hematological cancers 
(4-8). The link between centrosome aberrations and cancer 
was first proposed in the late nineteenth century. Hansemann 
and Galeotti observed abnormal mitotic figures as a signature 
of pathological mitosis in cancers (9, 10). Boveri who studied 
the cell divisions in cells with extra centrosomes recognized 
that aneuploid progenies are generated from multipolar mitosis, 
leading to the proposal that abnormal mitosis from centrosome 
aberrations can promote tumorigenesis (11). However, for a 
long time, it was uncertain if centrosome aberrations could 
have a causal role in tumorigenesis. Over the recent decades, 
a growing body of evidence has revealed that centrosome 
abnormalities contribute to different steps of tumorigenesis. The 
tumor promoting roles of centrosome aberrations are more 
multifaceted than what Boveri had initially envisioned. In this 
review, we will summarize centrosome defects in cancers and 
highlight recent advances in the understanding of mechanisms 
by which they promote different steps of cancer progression. 

CENTROSOME ABERRATIONS IN CANCERS

Centrosome aberrations are commonly found in various human 
cancers, including cultured cancer cells and clinical specimens 
(4-8). Centrosome defects are largely categorized into numerical 
and structural alterations (4, 12). Numerical aberrations of cen-
trosomes refer to centrosome amplification, which is character-
ized by the presence of extra centrioles, and they are the most 
frequently reported centrosome defects in cancers. An increased 
number of centrosomes is frequently associated with extensive 
karyotypic aberrations and poor patient outcomes in human 
cancers (5, 13). Structural abnormalities are detected as altered 
centrosome size or shape due to changes in the amount or 
composition of the PCM (14). In cancer cells or specimens, an 
enlarged centrosome labeled by a PCM marker likely indicates 
an increased amount of PCM and thus can be interpreted as 
structural centrosome aberrations. However, enlarged PCM size 
observed in cancer specimens may also be attributed to true 
structural defects or numerical centrosome defects due to extra 
centrioles that had coalesced into each of two large mitotic 
spindle poles. Thus, full characterization of the extent of nu-
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merical and structural centrosome abnormalities in cancer spe-
cimens would require careful analyses of high-resolution three- 
dimensional (3D) images labeled with both centriole and PCM 
markers.

Systematic efforts have been made to assess centrosome defects 
in numerous cancer cell lines and clinical specimens (6, 15-17). 
A comparative microscopy-based analysis of centrosome defects 
that examines NCI-60 panel of human cancer cell lines con-
firmed a widespread increase of centriole number in these cell 
lines (6). Moreover, a method has been designed to indirectly 
estimate centrosome amplification using the gene expression 
signature associated with centrosome amplification called CA20 
(15). It is composed of twenty genes including centrosome struc-
tural proteins, which have been experimentally demonstrated 
to induce centrosome amplification. The correlation among 
CA20 upregulation, high CIN and poor clinical outcome was 
confirmed by analyzing the CA20 transcriptomic signature across 
breast cancers (15) and in 9721 tumors from 32 cancer types 
available in The Cancer Genome Atlas (TCGA) (16). Further 
studies on direct experimental validation of CA20 or any equi-
valent gene expression signatures as a surrogate marker for 
centrosome amplification will facilitate its utility for diagnostic 
and prognostic markers in human cancers. 

THE ORIGINS OF CENTROSOME AMPLIFICATION 

How do extra centrosomes arise in cancer? Several mechanisms 
can account for centrosome amplification, including dysregulated 
centrosome duplication, prolonged arrest in the G2 phase, cyto-
kinesis failure, and increased centriole length (4, 8, 12, 18). 
Dysregulation of the centrosome duplication cycle can lead to 
centriole overduplication, consequently generating supernume-
rary centrioles. This can be achieved by altered expression of 
centrosomal proteins if their normal expression levels are cri-
tical for limiting centrosome duplication to once per cell cycle. 
In particular, polo-like kinase 4 (PLK4) is a master regulator of 
centriole duplication (19, 20) and it is frequently upregulated 
in some tumors (21). Elevated levels of PLK4, due to either 
PLK4 overexpression or failure to normally degrade PLK4, lead 
to centrosome overduplication (22-28). Defects in cell cycle 
progression, such as prolonged arrest in the G2 phase, induce 
centrosome reduplication (29, 30); consistently, DNA damage 
can induce centrosome amplification by increasing the dura-
tion of the G2 phase (31, 32). Centrosome amplification can 
arise from cytokinesis failure that generates tetraploid cells with 
twice the normal centrosome number and DNA content (4, 8, 
12, 18). Elongated centrioles can trigger centriole amplification 
(6), suggesting that structural centrosome defects can be linked 
to numerical defects, consistent with the observation that they 
often coexist in tumors (5, 6).

MECHANISMS BY WHICH EXTRA CENTROSOMES 
PROMOTE TUMORIGENESIS

Manipulation of centrosome number by controlled expression 
of PLK4 has proven to be invaluable in investigating the roles 
of centrosome amplification in tumorigenesis in vivo. The first 
compelling evidence that extra centrosomes can drive tumori-
genesis was demonstrated in a fly model with PLK4 overex-
pression (23). When neuroblasts or epithelial cells harboring 
extra centrosomes were transplanted into host flies, they gene-
rated tumors (23, 33). Although the mechanisms contributing 
to tumors may differ between these tissues, disruption of normal 
asymmetric cell division was the major mechanism that drove 
tumorigenesis in the flies (Fig. 1A) (23). This conclusion was 
supported by the observation that neuroblasts containing extra 
centrosomes displayed a minimal level of aneuploidy but showed 
defects in asymmetric cell division (23), which was shown to 
induce uncontrolled proliferation of neural stem cell population 
and tumor formation (34).

Tumor initiating roles of centrosome amplification seem clear 
in the fly model, but it is more complex and highly context- 
dependent in mammals. For example, spontaneous tumorigen-
esis was not observed in the mouse brain and epidermis, 
which was genetically engineered to induce centrosome ampli-
fication by PLK4 overexpression (35-37). However, additional 
p53 loss facilitated spontaneous tumor formation or hyperplasia 
in other mouse models (38, 39), suggesting that p53 could be 
a hurdle for centrosome amplification in contributing to tumo-
rigenesis. Later, a study utilizing a single copy of transgene to 
induce a modest increase in PLK4 expression level demonstrated 
that centrosome amplification is sufficient to drive spontaneous 
tumor formation in mice in vivo (40). Tumors arising from this 
mouse model exhibited complex karyotypes that are frequently 
found in human cancers (40). Based on these reports, it is now 
evident that centrosome amplification can sufficiently initiate 
tumorigenesis in mammals. 

How do cells tolerate the presence of extra centrosomes? 
Cells harboring extra centrosomes, if not organized, have the 
devastating potential of undergoing multipolar divisions that 
can produce inviable progenies due to gross chromosome mis-
segregation (8, 18, 41). However, cells bearing supernumerary 
centrosomes escape this detrimental division and form pseudo- 
bipolar spindles by organizing extra centrosomes into two groups 
through the centrosome clustering process (Fig. 1B) (23, 42-44). 
Centrosome clustering is essential for the viability of cells con-
taining extra centrosomes because multipolar divisions are gen-
erally lethal (43, 45). Moreover, the clustering of extra centro-
somes can drive chromosome instability (CIN) by promoting a 
high incidence of incorrect merotelic chromosome attachments 
because bipolar anaphase spindles are assembled through tran-
sient multipolar spindle intermediates (45, 46). This attachment 
error from multiple centrosomes results in an increased fre-
quency of lagging chromosomes, leading to anaphase chromo-
some missegregation (Fig. 1B) (45, 46). Thus, mitotic centrosome 
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Fig. 1. Mechanisms by which centrosome aberrations promote tumor progression. (A) Centrosome amplification impairs normal asymmetric division, 
leading to expansion of stem cell population and tissue outgrowth. (Left) Asymmetric division of neuroblasts in Drosophila melanogaster determines 
the pools of differentiated neurons and dividing stem cells, maintaining tissue homeostasis. This process depends on asymmetric maturation of 
two centrosomes (2C) and their interaction with the cell cortex, segregating different cell fate determinants into each of two daughter cells. (Right) 
In cells with centrosome amplification (＞2C, over 2 centrosomes), asymmetric cell division is disrupted by centrosome clustering, resulting in 
symmetric cell division. Subsequently, symmetric division leads to uncontrolled proliferation of self-renewing neural stem cells and tissue overgrowth. 
(B) Centrosome amplification induces chromosomal instability (CIN), leading to numerical and structural aberrations of chromosomes frequently 
found in cancers. Mitotic centrosome clustering leads to an elevated rate of chromosome segregation errors due to incorrect merotelic attachment 
(not shown), generating lagging chromosomes. Unequal segregation of lagging chromosomes generates aneuploidy, producing progenies with 
chromosome gain (e.g. oncogenes) or loss (e.g. tumor suppressor genes). In addition, lagging chromosome and subsequent formation of micro-
nucleus can drive chromothripsis, localized and extensive chromosome rearrangements through chromosome shattering and rejoining. (C) Centro-
some aberrations promote invasive properties. Mechanisms by which centrosome amplification (left) or structural defects (right) induce invasive be-
haviors are categorized, according to cell autonomous (top) or non-cell autonomous (down) mode of regulation. (1) Centrosome amplification induces 
cell autonomous invasion through increased microtubule (MT) nucleation followed by the activation of small GTPase Rac1. (2) Cells with extra 
centrosomes induce non-cell autonomous invasion through increased secretion that are mediated by extra centrosome-associated secretory pheno-
type (ECASP) or small extracellular vesicles (small EVs). Both secretions are mediated by increased reactive oxygen species (ROS) resulting from 
centrosome amplification. (3) NLP overexpression-mediated structural aberrations of centrosomes facilitate mitotic cell budding in non-cell auto-
nomous manner. Within epithelia, cells expressing an elevated level of NLP is stiffer with weakened E-cadherin-mediated cell adherence junc-
tions, squeezing out mitotic cells containing normal centrosomes to be disseminated. (4) Structural centrosome aberrations induced by over-
expression of NLP or CEP131 lead to basal extrusion of damaged cells by mispositioning of contractile actomyosin ring.
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clustering in cells with extra centrosomes can enable the sur-
vival of cells with ongoing genetic instability, promoting tumori-
genesis. In addition, lagging chromosomes are often missegre-
gated and subsequently encapsulated into micronuclei with 
their own nuclear envelope which is distinct from the main 
nucleus (Fig. 1B). Due to defective nuclear envelope assembly, 
micronuclei are prone to rupture (47-49). With defective DNA 
replication and fragile nuclear envelope, chromosomes in micro-
nuclei acquire DNA damage and undergo extensive chromo-
some rearrangements through chromothripsis (50, 51). Thus, 
extra centrosomes can serve as a driver in promoting both 
numerical and structural chromosomes aberrations that can 
contribute to tumorigenesis (Fig. 1B).

Based on the results from the studies described above, 
multiple factors may account for the context-dependent nature 
of the centrosome amplification consequences. For example, 
inefficient centrosome clustering and functional p53 can 
compromise the proliferation of cells with extra centrosomes 
by inducing lethal multipolar divisions or cell cycle arrest, thus 
preventing tumor growth (35, 38, 39). Moreover, in addition to 
generating aneuploidy progenies as Boveri initially envisioned, 
cells with extra centrosomes appear to employ various mecha-
nisms to promote tumorigenesis. 

MECHANISMS BY WHICH CENTROSOME 
ABERRATIONS PROMOTE INVASION 

As an MTOC, centrosomes play critical roles in the proper 
control of chromosome segregation and the maintenance of 
tissue architecture (1, 2). In addition to driving CIN by disrup-
ting mitotic fidelity (45, 46, 52), numerical and structural aber-
rations of centrosomes can disrupt tissue architectures and pro-
mote the initial step of the invasion-metastasis cascade. Meta-
stasis, the spread of a tumor from its site of origin to different 
parts of the body, is a major cause of the lethality of human 
cancer, as about 90% of cancer-associated deaths are caused 
by metastatic disease rather than primary tumors (53). Therefore, 
understanding the roles of abnormal centrosomes in various 
steps of tumorigenesis, especially during the metastatic local 
invasion, would be beneficial for the development of improved 
cancer prevention and treatment strategies. The following dis-
cussion focuses on various mechanisms through which abnor-
mal centrosomes promote cellular invasion (Fig. 1C). 

The first experimental evidence came from a study showing 
that centrosome amplification can induce invasive protrusions 
in 3D cultures of mammary epithelial cells (Fig. 1C1) (54). In 
this study, PLK4 overexpression-mediated centrosome amplifi-
cation led to the formation of invasive structures that can 
degrade the surrounding extracellular matrix (ECM). Interestingly, 
cellular invasion does not appear to be caused by aneuploidy, 
but it is mediated by increased microtubule nucleation result-
ing from centrosome amplification which leads to the activa-
tion of the small GTPase Rac1 (54). Increased Rac1 activity has 
been observed in many advanced human cancers and is 

known to promote invasion and metastasis through a variety of 
mechanisms, including activation of actin polymerization and 
disruption of cell-cell adhesion (55, 56). Consistently, cells with 
extra centrosomes showed disruption of E-cadherin-mediated 
cell junction due to increased Rac1 activity (54). Although the 
exact mechanisms underlying Rac1 activation by centrosome 
amplification remain unclear, these findings suggest that cen-
trosome amplification can promote cellular invasion by altering 
the organization and dynamics of interphase microtubules. 

In addition, cells with extra centrosomes can promote the 
invasion of adjacent cells by secretion of pro-invasive factors 
(Fig. 1C2) (57). This non-cell autonomous mechanism was 
discovered by experiments utilizing the conditioned media 
from cells harboring extra centrosomes. When it was added to 
the recipient cells containing normal centrosome numbers, the 
conditioned media promoted paracrine invasion in a 3D cul-
ture model. Multiple cytokines and chemokines were released 
by cells harboring extra centrosomes, including IL-8, ANGPTL4, 
and GDF-15, prominent factors implicated in cancer invasion. 
The altered secretion by centrosome amplification termed as 
the extra centrosomes-associated secretory phenotype (ECASP) 
did not depend on Rac1 activity but was partly regulated by 
increased reactive oxygen species (ROS) in cells with extra 
centrosomes (57). While the exact molecular mechanisms by 
which ROS triggers ECASP remain unclear, these results suggest 
that elevated levels of ROS can promote non-cell autonomous 
invasion through ECASP. 

Furthermore, small extracellular vesicles (EVs) secreted by 
cells harboring centrosome amplification have recently been 
reported to promote the invasion of pancreatic ductal adeno-
carcinoma (PDAC) by activating pancreatic stellate cells (PSCs) 
(Fig. 1C2) (58). EVs are important mediators responsible for 
communication between tumor cells and stromal cells, playing 
critical roles in both primary tumorigenesis and metastasis 
(59). Depending on their size and origin, EVs are broadly 
classified into microvesicles (large EVs) that are formed by the 
budding of the plasma membrane, and exosomes (small EVs) 
that are generated through the fusion of the multivesicular 
bodies with the plasma membrane (60). Interestingly, centro-
some amplification led to increased secretion of exosomes 
(small EVs) but not microvesicles (large EVs) in PDAC, and this 
altered secretion was due to lysosomal dysfunction resulting 
from ROS in these cells (58). Moreover, small EVs secreted by 
cells with extra centrosomes promoted PDAC invasion by 
activating PSCs indirectly, suggesting that cancer cells with 
extra centrosomes can alter the microenvironment of tumors, 
consequently promoting cancer invasion (58). 

In addition to centrosome amplification, structural centrosome 
defects have been shown to induce invasive phenotypes (Fig. 
1C3, C4) (61, 62). To mimic structural centrosome aberrations 
observed in cancer, the PCM component ninein-like protein 
(NLP) has been experimentally manipulated for overexpression 
because NLP overexpression is commonly observed in human 
cancers (63, 64) and it induces spontaneous tumor in transgenic 
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Fig. 2. Molecular pathways that limit the proliferation of cells with numerical centrosome aberrations. Distinct molecular pathways mediate cell 
cycle arrest or cell death in response to centrosome loss (left) or centrosome amplification (right). While stabilization of p53, a key mediator of 
cell cycle arrest and cell death, occurs in both conditions, upstream signaling pathways that regulate p53 differ in the condition of centrosome 
loss and amplification. (Left) Centrosome loss activates the USP28-53BP1-p53 mediated, mitotic surveillance pathway that is also activated by 
prolonged mitosis. [USP28, ubiquitin-specific protease 28 that interacts with 53BP1 (83); 53BP1, a p53 binding protein 1 (84)]. (Right) Centro-
some amplification, on the other hand, activates the LATS2-mediated Hippo pathway or PIDDosome-mediated pathway. In the LATS2-mediated 
Hippo pathway, LATS2 binds and inhibits MDM2, an E3 ubiquitin ligase for degradation of p53, thus stabilizing p53 (85). In the PIDDosome- 
mediated pathway, PIDDosome is a protein complex composed of PIDD1 (protein with a death domain induced by p53), RAIDD (adaptor protein 
with a caspase-recruitment domain and death domain), and caspase-2 (86). The centriolar distal appendage protein ANKRD26 recruits PIDD1 to 
the distal appendage of mature centrioles, initiating the PIDDosome activation and the subsequent caspase-2 activation (enlarged box region). 
Consequently, activated caspase-2 or LATS2 suppresses the p53 inhibitor MDM2, leading to p53 stabilization (85, 87).

mice (65). Indeed, NLP overexpression in 3D culture models 
showed non-cell autonomous dissemination of mitotic cells, 
displaying budding phenotype from epithelia (Fig. 1C3) (61). 
This epithelial budding appears to occur selectively in mitotic 
cells containing normal centrosomes that coexist within the 
epithelia. This is because cells overexpressing NLP displayed 
weakened E-cadherin-mediated cell adherence junctions due 
to increased microtubule nucleation. In addition, these cells 
were generally stiffer than the neighboring cells with normal 
centrosome structures. Together, these conditions may set 
heterogeneously tensioned mosaic epithelia where a few soft 
mitotic cells containing normal centrosomes are selectively 
disseminated from stiffer epithelia. Consequently, these dissemi-
nated dividing cells were mostly viable and thus may serve as 
potential metastatic cancer cells (61).

Structural centrosome abnormalities can also promote basal 
extrusion of damaged cells, thus contributing to invasion (Fig. 
1C4) (62). To maintain epithelial homeostasis and architecture, 
it is important to properly discard damaged cells by extruding 
them into the apical luminal cavity (66). A reversal in cell 
extrusion directionality from apical to basal has been observed 
in cancers that are associated with several oncogenic muta-
tions (67, 68). Interestingly, similar to oncogenic mutations 
found in K-Ras or APC, structural centrosome abnormalities 
induced by overexpression of either NLP or CEP131 promoted 
basal cell extrusion, leading to the dissemination of potentially 
metastatic cells (62).

Collectively, research in the past years revealed that nume-

rical and structural centrosome aberrations promote the initial 
step of the invasion-metastasis cascade. Moreover, the non-cell 
autonomous effects of abnormal centrosomes highlight the fact 
that small populations of cells with centrosomes aberrations in 
tumor mass can alter their microenvironment and that of the 
surrounding tumor cells. However, further studies to uncover 
multifaceted mechanisms and their cooperation during the 
invasion-metastasis cascade are warranted. 

LIMITING THE PROLIFERATION OF CELLS WITH TOO 
MANY OR NO CENTROSOMES

While numerical and structural centrosome defects have onco-
genic potential, protective mechanisms may suppress the pro-
liferation of cells with centrosome defects, especially in mammals. 
In cells with decreased or increased number of centrosomes, 
p53 can play a common and critical role in preventing the 
continued proliferation of these cells through distinct upstream 
signaling pathways (Fig. 2). 

Halting cell proliferation in response to centrosome loss 
Multiple studies have shown that centrosome loss can activate 
p53-dependent cell cycle arrest or apoptosis (69-71), suggest-
ing that the p53 pathway acts as a barrier to the continued 
proliferation of cells with centrosome loss. 

To identify signaling components that are responsible for 
blocking cell proliferation upon centrosome loss, three studies 
performed genome-wide CRISPR/Cas9 knockout screens using 
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cells where centrosome loss was induced by PLK4 inhibition 
(72-74). These studies commonly identified a USP28-53BP1-p53 
signaling axis also termed a mitotic surveillance pathway, that 
is essential for cell cycle arrest in response to centrosome loss 
(Fig. 2, left) (72-75). In support of its role, knockouts of each 
component of a USP28-53BP1-p53 signaling axis allowed the 
continuous proliferation of cells that had lost centrosomes 
(72-74). Despite its well-known function in DNA damage re-
sponse, the activation of the USP28-53BP1-p53 mitotic surveil-
lance pathway triggered by centrosome loss does not seem to 
involve DNA damage (73-75), raising the question of how cells 
sense centrosome loss. Several observations are consistent with 
the idea that centrosome loss may be indirectly sensed as an 
increased duration of mitosis, triggering cell cycle arrest. First, 
centrosome loss has been shown to slow down spindle assem-
bly and increase the mitotic duration (prolonged mitosis) (70-73). 
Second, prolonged prometaphase induced by microtubule de-
polymerization also led to a p53-dependent cell cycle arrest 
(76), suggesting that signaling that responds to centrosome loss 
and prolonged mitosis are shared. Third, this idea was further 
confirmed by the observation that the same components of the 
USP28-53BP1-p53 signaling axis are also required for cell 
cycle arrest induced by prolonged mitosis (72-74). 

While the indirect mechanism described above is a likely 
explanation of how cells sense centrosome loss as a perturbed 
and prolonged mitosis to suppress their growth, a recent study 
proposes an alternative mechanism where centrosomal p53 may 
act as a sensor for centrosome loss by monitoring centrosome 
integrity (77). This study proposes that centrosome loss disrupts 
the normal localization of p53 to mitotic centrosomes, resulting 
in the formation of ectopic fragmented foci that recruits 53BP1 
to suppress cell growth in an ATM kinase-dependent manner 
(77). Thus, further work would be required to better define the 
detailed mechanisms that limit the growth of potentially danger-
ous cells with increased chances of making mitotic errors and 
the role of the mitotic surveillance pathway in vivo. 

Halting cell proliferation in response to centrosome 
amplification 
Likewise, centrosome amplification has also been shown to 
restrict cell proliferation through p53 stabilization (78). However, 
evidence suggests that different pathways, independent of USP28 
or 53BP1, are involved (Fig. 2, right) (73). The first evidence 
came from the finding that the kinase LATS2-mediated Hippo 
pathway activates p53-mediated cell cycle arrest in tetraploid 
cells with extra centrosomes and diploid cells with centrosome 
amplification (79). Depletion of LATS2 did not restore cell 
proliferation in cells that have lost centrosomes, suggesting 
that LATS2 is not required for centrosome loss surveillance 
(71, 73). Thus, it is unlikely that the upstream signaling compo-
nents that respond to centrosome loss and centrosome ampli-
fication are shared (75). 

Another pathway that is regulated by the PIDDosome was 
shown to induce p53 stabilization and cell cycle arrest in 

tetraploid cells with extra centrosomes and cells with centro-
some amplification (Fig. 2, right) (80). Centrosome amplifica-
tion was sufficient to trigger PIDDosome activation. Moreover, 
PIDDosome-dependent caspase-2 activation was induced upon 
the presence of extra mother centrioles, implicating a direct 
pathway that depends on the extra mature centrosomes (80). 
The mechanisms mediating the localization of the PIDDosome 
component PIDD1 to mother centrioles and concurrence of 
PIDDosome-dependent caspase-2 activation have been recently 
uncovered (81, 82). In cells with supernumerary centrosomes, 
PIDD1 is recruited to extra mother centrioles through the cen-
triolar distal appendage protein ANKRD26, mediating PIDDosome 
activation (81, 82). In these cells, knockout of ANKRD26, a 
PIDD1 recruitment factor to distal appendages of mother cen-
trioles, abrogated caspase-2 activation and p21 upregulation, 
leading to improvement of cell proliferation (81).

Molecular pathways by which decreased or increased number 
of centrosomes trigger p53-mediated cell cycle arrest have 
been uncovered. If cells have functional p53, activation of 
these pathways could be a hurdle to the continued growth of 
cells harboring numerical centrosome defects. In this context, 
cancer cells that continuously proliferate despite the presence 
of numerical centrosome defects might develop adaptation to 
have defective mitotic or extra centrosome-surveillance pathways 
described above. Thus, the loss of some pathway components 
described above may serve as useful biomarkers for defining 
cancers with specific centrosome defects for better diagnosis 
and treatments. 

CONCLUSIONS AND PERSPECTIVES

It is becoming clear that centrosome abnormalities have a 
profound impact on tumor biology. For the past decades, tre-
mendous progress has been made in uncovering the nature of 
centrosome defects and the complex context-dependent con-
sequences of centrosome abnormalities in cancers, revealing 
the multifaceted role that they play in the initiation and pro-
gression of cancers. 

Many important questions remain to be elucidated with 
further research. Considering that the majority of the previous 
studies focused on the effects of centrosome amplification in 
cancers, a better understanding of the origins and consequences 
of structural centrosome defects would expand our mechanistic 
insight into tumorigenesis. While centrosome abnormalities 
can promote invasive phenotypes through various mechanisms, 
it will be interesting to explore their roles in the other steps of 
the invasion-metastasis cascade in appropriate animal models. 
In addition, the finding that cells that have lost centrosomes or 
have extra centrosomes can undergo cell cycle arrest has in-
spired intense efforts to identify pathways that could limit the 
proliferation of potentially dangerous cells with an increased 
propensity for genome instability. Interesting issues to be ad-
dressed in the future include whether the cells harboring 
numerical centrosome abnormalities require additional adapta-
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tion to promote tumorigenesis and what the long-term con-
sequences of pathway activation are in an in vivo context. From 
a cancer therapeutic perspective, because centrosome amplifi-
cation is a major driver of CIN, targeting cells with extra cen-
trosomes might be an effective CIN-directed anti-cancer thera-
peutic strategy. Furthermore, development of better biomarkers 
and a gene signature that predicts centrosome amplification 
will be invaluable in identifying appropriate patients for im-
proved cancer diagnosis and treatment.
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