DOI QR코드

DOI QR Code

Determination of HIF-1α degradation pathways via modulation of the propionyl mark

  • Kwanyoung Jeong (School of Pharmacy, Sungkyunkwan University) ;
  • Jinmi Choi (School of Pharmacy, Sungkyunkwan University) ;
  • Ahrum Choi (School of Pharmacy, Sungkyunkwan University) ;
  • Joohee Shim (School of Pharmacy, Sungkyunkwan University) ;
  • Young Ah Kim (Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University College of Medicine) ;
  • Changseok Oh (School of Pharmacy, Sungkyunkwan University) ;
  • Hong-Duk Youn (Department of Biomedical Sciences, Stochastic Stemness Research Center, Seoul National University College of Medicine) ;
  • Eun-Jung Cho (School of Pharmacy, Sungkyunkwan University)
  • Received : 2022.11.18
  • Accepted : 2023.02.09
  • Published : 2023.04.30

Abstract

The hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxic stress under physiological and pathological conditions. HIF-1α protein stability is tightly regulated by the ubiquitin-proteasome system (UPS) and autophagy in normoxia, hypoxia, and the tumor environment to mediate the hypoxic response. However, the mechanisms of how the UPS and autophagy interplay for HIF-1α proteostasis remain unclear. Here, we found a HIF-1α species propionylated at lysine (K) 709 by p300/CREB binding protein (CBP). HIF-1α stability and the choice of degradation pathway were affected by HIF-1α propionylation. K709-propionylation prevented HIF-1α from degradation through the UPS, while activated chaperon-mediated autophagy (CMA) induced the degradation of propionylated and nonpropionylated HIF-1α. CMA contributed to HIF-1α degradation in both normoxia and hypoxia. Furthermore, the pan-cancer analysis showed that CMA had a significant positive correlation with the hypoxic signatures, whereas SIRT1, responsible for K709-depropionylation correlated negatively with them. Altogether, our results revealed a novel mechanism of HIF-1α distribution into two different degradation pathways.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2022R1A2C2003505, 2021R1F1A1049941, and NRF-2019R1A5A2027340 to E.-J.C., NRF-2022R1C1C2005612 to J.C., and NRF2022R1A5A102641311 to H.-D.Y.).

References

  1. Wang GL, Jiang BH, Rue EA and Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-5514  https://doi.org/10.1073/pnas.92.12.5510
  2. Arany Z, Huang LE, Eckner R et al (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A 93, 12969-12973  https://doi.org/10.1073/pnas.93.23.12969
  3. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7, 345-350  https://doi.org/10.1016/S1471-4914(01)02090-1
  4. Hong SS, Lee H and Kim KW (2004) HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res Treat 36, 343-353  https://doi.org/10.4143/crt.2004.36.6.343
  5. Dengler VL, Galbraith MD and Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49, 1-15  https://doi.org/10.3109/10409238.2013.838205
  6. Epstein ACR, Gleadle JM, McNeill LA et al (2001) C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54  https://doi.org/10.1016/S0092-8674(01)00507-4
  7. Ivan M, Kondo K, Yang HF et al (2001) HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O-2 sensing. Science 292, 464-468  https://doi.org/10.1126/science.1059817
  8. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275  https://doi.org/10.1038/20459
  9. Cockman ME, Masson N, Mole DR et al (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275, 25733-25741  https://doi.org/10.1074/jbc.M002740200
  10. Boya P, Reggiori F and Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713-720  https://doi.org/10.1038/ncb2788
  11. Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20, 521-527  https://doi.org/10.1038/s41556-018-0092-5
  12. Kaushik S and Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19, 365-381  https://doi.org/10.1038/s41580-018-0001-6
  13. Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A and Semenza GL (2013) Chaperone-mediated autophagy targets hypoxia-inducible factor-1 alpha (HIF-1 alpha) for lysosomal degradation. J Biol Chem 288, 10703-10714  https://doi.org/10.1074/jbc.M112.414771
  14. Ferreira JV, Fofo H, Bejarano E et al (2013) STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 9, 1349-1366  https://doi.org/10.4161/auto.25190
  15. Ferreira JV, Soares AR, Ramalho JS, Pereira P and Girao H (2015) K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci Rep 5, 10210 
  16. Prabakaran S, Lippens G, Steen H and Gunawardena J (2012) Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4, 565-583  https://doi.org/10.1002/wsbm.1185
  17. Kebede AF, Nieborak A, Shahidian LZ et al (2017) Histone propionylation is a mark of active chromatin. Nat Struct Mol Biol 24, 1048-1056  https://doi.org/10.1038/nsmb.3490
  18. Sabari BR, Tang Z, Huang H et al (2015) Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 58, 203-215  https://doi.org/10.1016/j.molcel.2015.02.029
  19. Geng H, Liu Q, Xue C et al (2012) HIF1 alpha protein stability is increased by acetylation at lysine 709. J Biol Chem 287, 35496-35505  https://doi.org/10.1074/jbc.M112.400697
  20. Lim JH, Lee YM, Chun YS, Chen J, Kim JE and Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1 alpha. Mol Cell 38, 864-878  https://doi.org/10.1016/j.molcel.2010.05.023
  21. Ghosh R, Gillaspie JJ, Campbell KS, Symons JD, Boudina S and Pattison JS (2022) Chaperone-mediated autophagy protects cardiomyocytes against hypoxic-cell death. Am J Physiol Cell Physiol 323, 1555-1575  https://doi.org/10.1152/ajpcell.00369.2021
  22. Dohi E, Tanaka S, Seki T et al (2012) Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int 60, 431-442  https://doi.org/10.1016/j.neuint.2012.01.020
  23. Finkel T, Deng CX and Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591  https://doi.org/10.1038/nature08197
  24. Houtkooper RH, Pirinen E and Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13, 225-238  https://doi.org/10.1038/nrm3293
  25. Jeong JW, Bae MK, Ahn MY et al (2002) Regulation and destabilization of HIF-1 alpha by ARD1-mediated acetylation. Cell 111, 709-720  https://doi.org/10.1016/S0092-8674(02)01085-1
  26. Kim Y, Nam HJ, Lee J et al (2016) Methylation-dependent regulation of HIF-1 alpha stability restricts retinal and tumour angiogenesis. Nat Commun 7, 10347 
  27. Fluegel D, Goerlach A, Michiels C and Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1 alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27, 3253-3265  https://doi.org/10.1128/MCB.00015-07
  28. Wang XJ, Yu J, Wong SH et al (2013) A novel crosstalk between two major protein degradation systems Regulation of proteasomal activity by autophagy. Autophagy 9, 1500-1508  https://doi.org/10.4161/auto.25573
  29. Seo KS, Park JH, Heo JY et al (2015) SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene 34, 1354-1362  https://doi.org/10.1038/onc.2014.76
  30. Tomita T, Hamazaki J, Hirayama S, McBurney MW, Yashiroda H and Murata S (2015) Sirt1-deficiency causes defective protein quality control. Sci Rep 5, 12613 
  31. Joshi S, Singh AR and Durden DL (2014) MDM2 regulates hypoxic hypoxia-inducible factor 1 alpha stability in an e3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem 289, 22785-22797  https://doi.org/10.1074/jbc.M114.587493
  32. Simithy J, Sidoli S, Yuan ZF et al (2017) Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun 8, 1141 
  33. Furuta E, Pai SK, Zhan R et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68, 1003-1011  https://doi.org/10.1158/0008-5472.CAN-07-2489
  34. Bensaad K, Favaro E, Lewis CA et al (2014) Fatty acid uptake and lipid storage induced by HIF-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 9, 349-365  https://doi.org/10.1016/j.celrep.2014.08.056
  35. Schug ZT, Peck B, Jones DT et al (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57-71  https://doi.org/10.1016/j.ccell.2014.12.002
  36. Trefely S, Huber K, Liu J et al (2022) Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol Cell 82, 447-462 e446