DOI QR코드

DOI QR Code

나노복합재료의 전기/역학적 특성과 예측을 위한 멀티스케일 모델링의 최신 연구 분석

Review of Recent Advances in the Electrical/Mechanical Characteristics of Nanocomposites and Multi-scale Modeling of Nanocomposites

  • 길태건 (한국과학기술원 건설및환경공학과 ) ;
  • 배진호 (한국과학기술원 건설및환경공학과 ) ;
  • 윤현노 (한국과학기술원 건설및환경공학과 ) ;
  • 이행기 (한국과학기술원 건설및환경공학과 )
  • Taegeon Kil (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jin-Ho Bae (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hyun-No Yoon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Haeng-Ki Lee (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2023.03.22
  • 심사 : 2023.04.07
  • 발행 : 2023.04.30

초록

나노복합재료는 다기능성과 고성능을 가지는 혁신적인 복합재료이다. 나노 스케일 필러의 혼입함으로써 복합재료의 전기적, 역학적 및 열적 특성이 크게 향상될 수 있기 때문에 나노 스케일 필러를 이용한 나노복합재료의 특성화에 관한 다양한 연구가 광범위하게 수행되어 왔다. 특히, 탄소계 나노 필러(탄소나노튜브, 카본블랙, 그래핀 나노판 등)를 활용하여 전기/역학적 특성을 향상시킨 나노복합소재 개발에 관한 연구들이 복합재료 분야에서 큰 관심을 받고있다. 본 논문은 실제 응용에 필수적인 나노복합재료의 전기/역학적 특성을 문헌조사를 통해 고찰하는 것을 목표로 한다. 또한, 나노복합재료의 전기/역학적 특성 예측을 위한 최신 멀티스케일 모델링 연구들에 대해서 검토하고, 멀티스케일 모델링에 대한 과제와 향후 발전 가능성에 대해서 논의한다.

Nanocomposites have been considered innovative composite materials that have multi-functionality and high performance. Because the incorporation of nanoscale fillers may significantly improve the electrical, mechanical, and thermal properties of composites, numerous extensive studies on the characterization of nanocomposites with nanoscale fillers have been performed. In particular, the development of nanocomposites using carbon-based nanoscale fillers (e.g., carbon nanotubes, carbon black, graphene nanoplates) have attracted much interest in the composite field. This paper provides a review of recent advances in the electrical/mechanical characteristics of nanocomposites, which are essential for their practical applications. Furthermore, this paper revisits the recent research on multi-scale modeling, which is a promising approach for predicting the characteristics of nanocomposites. The current challenges and future development potentials for multi-scale modeling are also discussed.

키워드

과제정보

본 연구는 한국과학재단이 주관하는 중견연구자지원사업(No. 2021R1A2C3006382)의 지원을 받아 수행되었습니다.

참고문헌

  1. Al-Saleh, M.H., Sundararaj, U. (2011) Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites, Compos. Part A: Appl. Sci. & Manuf., 42(12), pp.2126~2142. https://doi.org/10.1016/j.compositesa.2011.08.005
  2. Cai, J.H., Li, J., Chen, X.D., Wang, M. (2020) Multifunctional Polydimethylsiloxane Foam with Multi-walled Carbon Nanotube and Thermo-Expandable Microsphere for Temperature Sensing, Microwave Shielding and Piezoresistive Sensor, Chem. Eng. J., 393, p.124805.
  3. Castaneda, P.P., Willis, J. (1995) The Effect of Spatial Distribution on the Effective behavior of Composite Materials and Cracked Media, J. Mech. & Phys. Solids, 43(12), pp.1919~1951. https://doi.org/10.1016/0022-5096(95)00058-Q
  4. Chan, L.Y ., Andrawes, B. (2010) Finite Element Analysis of Carbon Nanotube/Cement Composite with Degraded Bond Strength, Comput. Mater. Sci., 47(4), pp.994~1004. https://doi.org/10.1016/j.commatsci.2009.11.035
  5. Cui, X.Z., Li, J., Su, J.W., Jin, Q., Wang, Y.L., Cui, S.Q. (2019) Effect of Temperature on Mechanical Performance and Tensoresistivity of a New Sensor-Enabled Geosynthetic Material, J. Mater. Civil Eng., 31(6), p.04019060.
  6. Duan, H.L., Karihaloo, B.L. (2007) Effective Thermal Conductivities of Heterogeneous Media Containing Multiple Imperfectly Bonded Inclusions, Phys. Rev. B, 75(6), p.064206.
  7. Ellis, B.D., McDowell, D.L. (2017) Application-Specific Computational Materials Design Via Multiscale Modeling and the Inductive Design Exploration Method (IDEM), Integr. Mater. Manuf. Innov., 6(1), pp.9~35. https://doi.org/10.1007/s40192-017-0086-3
  8. Gobel, L., Konigsberger, M., Osburg, A., Pichler, B. (2018) Viscoelastic behavior of Polymer-Modified Cement Pastes: Insight from Downscaling Short-Term Macroscopic Creep Tests by Means of Multiscale Modeling, Appl. Sci., 8(4), p.487.
  9. Han, J., Liu, W., Wang, S., Du, D., Xu, F., Li, W., De Schutter, G. (2016) Effects of Crack and ITZ and Aggregate on Carbonation Penetration based on 3D Micro X-ray CT Microstructure Evolution, Constr. & Build. Mater., 128, pp.256~271. https://doi.org/10.1016/j.conbuildmat.2016.10.062
  10. Hussein, A., Kim, B. (2019) Micromechanics based FEM Study on the Mechanical Properties and Damage of Epoxy Reinforced with Graphene based Nanoplatelets, Compos. Struct., 215, pp.266~277. https://doi.org/10.1016/j.compstruct.2019.02.059
  11. Jang, D., Yoon, H.N., Nam, I.W., Lee, H.K. (2020) Effect of Carbonyl Iron Powder Incorporation on the Piezoresistive Sensing Characteristics of CNT-based Polymeric Sensor, Compos. Struct., 244, p.112260.
  12. Jin, L., Chortos, A., Lian, F., Pop, E., Linder, C., Bao, Z., Cai, W. (2018) Microstructural Origin of Resistance-strain Hysteresis in Carbon Nanotube Thin Film Conductors, Proc. Natl. Acad. Sci., 115(9), pp.1986~1991. https://doi.org/10.1073/pnas.1717217115
  13. Kil, T., Bae, J.H., Y ang, B., Lee, H.K. (2023) Multi-Level Micromechanics-based Homogenization for the Prediction of Damage behavior of Multiscale Fiber-Reinforced Composites, Compos. Struct., 303, p.116332.
  14. Kil, T., Jin, D.W., Yang, B., Lee, H.K. (2022) A Combined Experimental and Micromechanical approach to Investigating PTC and NTC Effects in CNT-Polypropylene Composites under a Self-heating Condition, Compos. Struct., 289, p.115440.
  15. Kim, G.M., Naeem, F., Kim, H.K., Lee, H.K. (2016) Heating and Heat-Dependent Mechanical Characteristics of CNT-Embedded Cementitious Composites, Compos. Struct., 136, pp.162~170. https://doi.org/10.1016/j.compstruct.2015.10.010
  16. Lee, W., Chung, I., Baek, K., Im, S., Cho, M. (2022) Multiscale Modeling to Characterize Electromechanical behaviors of CNT/Polymer Nanocomposites Considering the Matrix Damage and Interfacial Debonding, Mech. Adv. Mater. & Struct., 29(16), pp.2322~2341. https://doi.org/10.1080/15376494.2020.1861396
  17. Li, W., Dong, W., Guo, Y., Wang, K., Shah, S.P. (2022) Advances in Multifunctional Cementitious Composites with Conductive Carbon Nanomaterials for Smart Infrastructure, Cement & Concr. Compos., 128, p.104454.
  18. Mori, T., Tanaka, K. (1973) Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta metall., 21(5), pp.571~574. https://doi.org/10.1016/0001-6160(73)90064-3
  19. Nakano, H., Shimizu, K., Takahashi, S., Kono, A., Ougizawa, T., Horibe, H. (2012) Resistivity-Temperature Characteristics of Filler-Dispersed Polymer Composites, Polymer, 53(26), pp.6112~6117. https://doi.org/10.1016/j.polymer.2012.10.046
  20. Pal, G., Kumar, S. (2016) Multiscale Modeling of Effective Electrical Conductivity of Short Carbon Fiber-Carbon Nanotube-Polymer Matrix Hybrid Composites, Mater. & Des., 89, pp.129~136. https://doi.org/10.1016/j.matdes.2015.09.105
  21. Pan, Y ., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S. (2011) Percolation Threshold and Electrical Conductivity of a Two-Phase Composite Containing Randomly Oriented Ellipsoidal Inclusions, J. Appl. Phys., 110(12), p.123715.
  22. Park, M., Park, J.H., Y ang, B.J., Cho, J., Kim, S.Y ., Jung, I. (2018) Enhanced Interfacial, Electrical, and Flexural Properties of Polyphenylene Sulfide Composites Filled with Carbon Fibers Modified by Electrophoretic Surface Deposition of Multi-Walled Carbon Nanotubes, Compos. Part A: Appl. Sci. & Manuf., 109, pp.124~130. https://doi.org/10.1016/j.compositesa.2018.03.005
  23. Rubel, R.I., Ali, M.H., Jafor, M.A., Alam, M.M. (2019) Carbon Nanotubes Agglomeration in Reinforced Composites: A Review, AIMS Mater. Sci., 6(5), pp.756~780. https://doi.org/10.3934/matersci.2019.5.756
  24. Sanli, A., Muller, C., Kanoun, O., Elibol, C., Wagner, M.F.X. (2016) Piezoresistive Characterization of Multi-Walled Carbon Nanotube-Epoxy based Flexible Strain Sensitive Films by Impedance Spectroscopy, Compos. Sci. & Technol., 122, pp.18~26. https://doi.org/10.1016/j.compscitech.2015.11.012
  25. Wang, L., Aslani, F. (2019) A Review on Material Design, Performance, and Practical Application of Electrically Conductive Cementitious Composites, Constr. & Build. Mater., 229, p.116892.
  26. Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M. (2014) A Continuum Model with a Percolation Threshold and TunnelingAssisted Interfacial Conductivity for Carbon Nanotube-based Nanocomposites, J. Appl. Phys., 115(19), p.193706.
  27. Wen, S., Chung, D.D.L. (2006) The Role of Electronic and Ionic Conduction in the Electrical Conductivity of Carbon Fiber Reinforced Cement, Carbon, 44(11), pp.2130~2138. https://doi.org/10.1016/j.carbon.2006.03.013
  28. Weng, G. (1990) The Theoretical Connection between Mori-Tanaka's Theory and the Hashin-Shtrikman-Walpole Bounds, Int. J. Eng. Sci., 28(11), pp.1111~1120. https://doi.org/10.1016/0020-7225(90)90111-U
  29. Wu, W., Al-Ostaz, A., Cheng, A.H.D., Song, C.R. (2011) Computation of Elastic Properties of Portland Cement using Molecular Dynamics, J. Nanomechanics Micromech, 1(2), pp.84~90. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000026
  30. Yang, B.J., Shin, H., Lee, H.K., Kim, H. (2013) A Combined Molecular Dynamics/Micromechanics/Finite Element Approach for Multiscale Constitutive Modeling of Nanocomposites with Interface Effects, Appl. Phys. Lett., 103(24), p.241903.
  31. Yang, S. (2022) Interface and Interphase of Nanocomposites Tailored by Covalent Grafting of Carbon Nanotube: Hierarchical Multiscale Modeling, Int. J. Mech. Sci., 220, p.107160.
  32. Zhang, K., Li, G.H., Feng, L.M., Wang, N., Guo, J., Sun, K., Wang, M. (2017) Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly (L-lactide)/Multi-Walled Carbon Nanotube Nanocomposites with Electrically Conductive Segregated Networks, J. Mater. Chem. C, 5(36), pp.9359~9369. https://doi.org/10.1039/C7TC02948A
  33. Zhu, F., Park, C., Yun, G.J. (2021) An Extended Mori-Tanaka Micromechanics Model for Wavy CNT Nanocomposites with Interface Damage, Mech. Advan. Mater. & Struct., 28(3), pp.295~307. https://doi.org/10.1080/15376494.2018.1562135