DOI QR코드

DOI QR Code

Making Thoughts Real - a Machine Learning Approach for Brain-Computer Interface Systems

  • Received : 2023.03.15
  • Accepted : 2023.03.22
  • Published : 2023.05.31

Abstract

In this paper, we present a simple classification model based on statistical features and demonstrate the successful implementation of a brain-computer interface (BCI) based light on/off control system. This research shows study and development of light on/off control system based on BCI technology, which allows the users to control switching a lamp using electroencephalogram (EEG) signals. The logistic regression algorithm is used for classification of the EEG signal to convert it into light on, light off control commands. Training data were collected using 14-channel BCI system which records the brain signals of participants watching a screen with flickering lights and saves the data into .csv file for future analysis. After extracting a number of features from the data and performing classification using logistic regression, we created commands to switch on a physical lamp and tested it in a real environment. Logistic regression allowed us to quite accurately classify the EEG signals based on the user's mental state and we were able to classify the EEG signals with 82.5% accuracy, producing reliable commands for turning on and off the light.

Keywords

References

  1. Samaa S. Abdulwahab, "EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm", Iraqi Journal for Electrical and Electronic Engineering, Vol. 17, December 2021. DOI: 10.1088/1742-6596/1973/1/012056
  2. L. Bahatti1, A. El Magri1, A. Lekova2, O.Bouattane, "Developing Brain Computer Interface for Motor Imagery Mental Commands", ISSN 2603-4697 (Online) Complex Control Systems Vol. 2, No 1, 2020, pp. 1-6, pp.
  3. Sandeep Bodda, Shyam Diwakar, "Exploring EEG spectral and temporal dynamics underlying a hand grasp movement", PLoS One. 2022 Jun 23;17(6):e0270366., DOI: 10.1371/journal.pone.0270366
  4. J. Hurtado-Rincon, S. Rojas-Jaramillo, Y. Ricardo-Cespedes, A. M. A lvarez-Meza and G. Castellanos-Dominguez, "Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system", 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, Armenia, Colombia, 2014, pp. 1-5, DOI: 10.1109/STSIVA.2014.7010165
  5. Rodriguez-Bermudez G, Garcia-Laencina PJ. "Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces". J Med Syst. 2012 Nov;36 Suppl 1:S51-63. DOI: 10.1007/s10916-012-9893-4. Epub 2012 Nov 2. PMID: 23117792.
  6. Reder, E.E., de Quadros Martins, A.R., Ferreira, V.R.T., Kalil, F. (2014). Neural Interface Emotiv EPOC and Arduino: Brain-Computer Interaction in a Proof of Concept. In: Kurosu, M. (eds) Human-Computer Interaction. Advanced Interaction Modalities and Techniques. HCI 2014. Lecture Notes in Computer Science, vol 8511. Springer, Cham. https://doi.org/10.1007/978-3-319-07230-2_58
  7. STRMISKA, Martin, Zuzana KOUDELKOVA a Martina ZABCIKOVA. "Measuring brain signals using emotiv devices". WSEAS Transactions on Systems and Control. 2018, vol. 13, s. 537-542. ISSN 1991-8763
  8. O. Carrera-Leon, J. M. Ramirez, V. Alarcon-Aquino, M. Baker, D. D'Croz-Baron and P. Gomez-Gil, "A motor imagery BCI experiment using wavelet analysis and spatial patterns feature extraction", 2012 Workshop on Engineering Applications, Bogota, Colombia, 2012, pp. 1-6, DOI: 10.1109/WEA.2012.6220084.
  9. Szczepan Paszkiel, "Brain-computer technology-based training system in the field of motor imagery", IET Science, Measurement & Technology 14, December 2020, DOI: 10.1049/iet-smt.2019.0522
  10. Ekansh Sareen, Anubha Gupta, "Studying functional brain networks from dry electrode EEG set during music and resting states in neurodevelopment disorder", http://dx.doi.org/10.1101/759738doi: posted online Sep. 8, 2019;
  11. V.Asanza, "SSVEP-EEG Signal classification based on Emotiv Epoc BCI and Raspberry PI", IFACT conference paper, 388 -393 pp., 2021, https://doi.org/10.1016/j.ifacol.2021.10.287
  12. Tat'y Mwata-Velu, Jose Ruiz-Pinales "Motor Imagery Classification Based on a Recurrent-Convolutional Architecture to Control a Hexapod Robot", Mathematics 2021, 9, 606. DOI: 10.3390/math9060606
  13. Marquos Zaki, Ali Alquraini, "Home Automation using EMOTIV: Controlling TV by Brainwaves", Journal of Ubiquitous Systems & Pervasive Networks Volume 10, No. 1 (2018) pp. 27-32, DOI: 10.5383/JUSPN.10.01.004
  14. Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019 Jun;16(3):031001. DOI: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26. PMID: 30808014.
  15. Lujan, M.A.; Jimeno, M.V.; Mateo Sotos, J.; Ricarte, J.J.; Borja, A.L. "A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia", Electronics 2021, 10, 3037. https://doi.org/10.3390/electronics10233037
  16. William O, "Handbook of EEG interpretation", 2008 Demos Medical Publishing, LLC, ISBN-10: 0826147089
  17. Shoorangiz, Reza, Stephen J. Weddell, and Richard D. Jones. "EEG-Based Machine Learning: Theory and Applications", Handbook of Neuroengineering. Singapore: Springer Singapore, 2021. 1-39, https://doi.org/10.1007/978-981-15-2848-4_70-1
  18. Toshihisa Tanaka and Mahnaz Arvaneh, "Signal Processing and Machine Learning for Brain--Machine Interfaces", The Institution of Engineering and Technology is registered as a Charity in England, 2018, ISBN: 9781785613982, DOI: 10.1049/PBCE114E