DOI QR코드

DOI QR Code

수전해 시스템 성능 향상을 위한 능동 이온수송 기술 연구

A Study on Active Ion Transport Technology to Improve Water Electrolysis System Performance

  • 김현중 (국립군산대학교 일반대학원 기계공학과) ;
  • 궈하오 (국립군산대학교 일반대학원 기계공학과) ;
  • 김상영 (국립군산대학교 기계공학부)
  • HYEON-JUNG KIM (Department of Mechanical Engineering, Kunsan National University General Graduate School) ;
  • HAO GUO (Department of Mechanical Engineering, Kunsan National University General Graduate School) ;
  • SANG-YOUNG KIM (Department of Mechanical Engineering, Kunsan National University)
  • 투고 : 2022.11.02
  • 심사 : 2023.03.02
  • 발행 : 2023.04.28

초록

In this study, rotary magnet holder (RMH) was manufactured to analyze the ion transport effect according to the rotating magnetic field for the hydrogen production efficiency by alkaline water electrolyte. In the experiment, the voltage signal according to the magnet arrangement inside the RMH, the rotation speed, and the rotation time was measured using the voltage measurement module. As a result of the voltage signal measurement experiment, the average potential difference increased as the rotation speed of the RMH increased. Through the results of the voltage signal measurement experiment, the most efficient magnet arrangement (case 2) was applied to the RMH to conduct a water electrolysis experiment. A 20% NaOH aqueous solution was filled in the electrolytic cell, and a direct current 2 V constant voltage was applied to measure the current value according to the RMH rotation to compare the hydrogen generation amount. When rotating at 100 RPM, the hydrogen production efficiency increased by 8.06% compared to when not rotating. Considering the area exceeding +25 mA, which was not measured at the beginning of the experiment, an increase in hydrogen production of about 10% or more can be expected.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0012769, 2022년 산업혁신인재성장지원사업)과 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원(NRF-2019R1I1A3A0106276412)을 받았음.

참고문헌

  1. S. A. Park, E. K. Lee, J. W. Lee, S. K. Lee, J. S. Moon, T. W. Kim, and Y. K. Cheon, "A study on performance characteristic and safety of alkaline water electrolysis system", Journal of Hydrogen and New Energy, Vol. 28, No. 6, 2017, pp. 601-609, doi: https://doi.org/10.7316/KHNES.2017.28.6.601.
  2. M. Y. Lin and L. W. Hourng, "Effects of magnetic field and pulse potential on hydrogen production via water electrolysis", International Journal of Energy Research, Vol. 38, No. 1, 2014, pp. 106-116, doi: https://doi.org/10.1002/er.3112.
  3. H. S. Choi, D. S. Yim, C. H. Rhyu, J. C. Kim, and G. J. Hwang, "Study on the electrode characteristics for the alkaline water electrolysis", Journal of Hydrogen and New Energy, Vol. 23, No. 2, 2012, pp. 117-124, doi: https://doi.org/10.7316/KHNES.2012.23.2.117.
  4. D. W. Yim, "Governance leadership for hydrogen economy revitalization", Journal of Hydrogen and New Energy, Vol. 31, No. 3, 2020, pp. 265-275, doi: https://doi.org/10.7316/KHNES.2020.31.3.265.
  5. M. Y. Lin, L. W. Hourng, and C. W. Kuo, "The effect of magnetic force on hydrogen production efficiency in water electrolysis", International Journal of Hydrogen Energy, Vol. 37, No. 2, 2012, pp. 1311-1320, doi: https://doi.org/10.1016/j.ijhydene.2011.10.024.
  6. S. Anwar, F. Khan, Y. Zhang, and A. Djire, " Recent development in electrocatalysts for hydrogen production through water electrolysis", International Journal of Hydrogen Energy, Vol. 46, No. 63, 2021, pp. 32284-32317, doi: https://doi.org/10.1016/j.ijhydene.2021.06.191.
  7. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, "Existence of optimum space between electrodes on hydrogen production by water electrolysis", International Journal of Hydrogen Energy, Vol. 28, No. 1, 2003, pp. 3541, doi: https://doi.org/10.1016/S0360-3199(02)000277.
  8. N. Bidin, S. R. Azni, S. Islam, M. Abdullah, M. F. S. Ahmad, G. Krishnan, A. R. Johari, M. A. A. Bakar, N. S. Sahidan, N. F. Musa, M. F. Salebi, N. Razali, and M. M. Sanagi, "The effect of magnetic and optic field in water electrolysis", International Journal of Hydrogen Energy, Vol. 42, No. 26, 2017, pp. 16325-16332, doi: https://doi.org/10.1016/j.ijhydene.2017.05.169.
  9. S. Y. Jang, C. H. Ryu, G. J. Hwang, "High temperature characteristics of commercially available anion exchange membrane for alkaline water electrolysis", Journal of Hydrogen and New Energy, Vol. 33, No. 4, 2022, pp. 330-336, doi: https://doi.org/10.7316/KHNES.2022.33.4.330.
  10. M. Kotisaari, O. Thomann, D. Montinaro, and J. Kiviaho, "Evaluation of a SOE stack for hydrogen and syngas pro duction: a performance and durability analysis", Fuel Cells, Vol. 17, No. 4, 2017, pp. 571580, doi: https://doi.org/10.1002/fuce.201600166.
  11. S. S. Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - a review", Materials Science for Energy Technologies, Vol. 2, No. 3, 2019, pp. 442-454, doi: https://doi.org/10.1016/j.mset.2019.03.002.
  12. C. Minke, M. Suermann, B. Bensmann, and R. Hanke-Rauschenbach, "Is iridium demand a potential bottleneck in the realization of largescale PEM water electrolysis?", International Journal of Hydrogen Energy, Vol. 46, No. 46, 2021, pp. 23581-23590, doi: https://doi.org/10.1016/j.ijhydene.2021.04.174.