DOI QR코드

DOI QR Code

가역적 수소 저장을 위한 마그네슘 알라네이트 (Mg(AlH4)2) 나노 입자 활용 : 밀도범함수이론 연구

DFT Investigation of Phase Stability of Magnesium Alanate (Mg(AlH4)2) for Reversible Hydrogen Storage

  • 임동희 (충북대학교 환경공학과) ;
  • 배은민 (충북대학교 환경공학과) ;
  • 한영수 (충남대학교 환경공학과)
  • DONG-HEE LIM (Department of Environmental Engineering, Chungbuk National University) ;
  • EUNMIN BAE (Department of Environmental Engineering, Chungbuk National University) ;
  • YOUNG-SOO HAN (Department of Environmental Engineering, Chungnam National University)
  • 투고 : 2023.02.28
  • 심사 : 2023.04.25
  • 발행 : 2023.04.28

초록

Phase stability diagrams were constructed for magnesium alanate (Mg(AlH4)2) nanoparticles to investigate the reversible hydrogen storage reaction by using density functional theory. Our findings indicate that bulk Mg(AlH4)2 shows favorable hydrogen release, but unfavorable hydrogen uptake (adsorption) reactions. However, for Mg(AlH4)2 nanoparticles, it was observed that hydrogen release and recharge can be achieved by controlling the particle size and temperature. Furthermore, by predicting the decomposition phase diagram of Mg(AlH4)2 nanoparticles with varying hydrogen partial pressure, it was discovered that reversible dehydrogenation reactions can occur even in relatively large nanoparticles by controlling the hydrogen partial pressure.

키워드

과제정보

이 논문은 충북대학교 국립대학육성사업(2022) 지원을 받아 작성되었습니다. 클러스터 전개법 계산 코드를 제공해 주신 Johns Hopkins University의 Tim Mueller에게 감사함을 전합니다.

참고문헌

  1. B. P. Tarasov, P. V. Fursikov, A. A. Volodin, M. S. Bocharnikov, Y. Y. Shimkus, A. M. Kashin, V. A. Yartys, S. Chidziva, S. Pasupathi, and M. V. Lototskyy, "Metal hydride hydrogen storage and compression systems for energy storage technologies", International Journal of Hydrogen Energy, Vol. 46, No. 25, 2021, pp. 13647-13657, doi: https://doi.org/10.1016/j.ijhydene.2020.07.085. 
  2. A. Schneemann, J. L. White, S. Y. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, and V. Stavila, "Nanostructured Metal Hydrides for Hydrogen Storage", Chemical Reviews, Vol. 118, No. 22, 2018, pp. 10775-10839, doi: https://doi.org/10.1021/acs.chemrev.8b00313. 
  3. T. T. Le, C. Pistidda, V. H. Nguyen, P. Singh, P. Raizada, T. Klassen, and M. Dornheim, "Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4", International Journal of Hydrogen Energy, Vol. 46, No. 46, 2021, pp. 23723-23736, doi: https://doi.org/10.1016/j.ijhydene.2021.04.150. 
  4. J. J. Vajo, F. Mertens, C. C. Ahn, R. C. Bowman Jr, and B. Fultz, "Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 Destabilized with Si", The Journal of Physical Chemistry B, Vol. 108, No. 37, 2004, pp. 13977-13983, doi: https://doi.org/10.1021/jp040060h. 
  5. B. Dai, D. S. Sholl, and J. K. Johnson, "First-principles investigation of adsorption and dissociation of hydrogen on Mg2Si surfaces", The Journal of Physical Chemistry C, Vol. 111, No. 18, 2007, pp. 6910-6916, doi: https://doi.org/10.1021/jp070469h. 
  6. C. Milanese, S. Garroni, F. Gennari, A. Marini, T. Klassen, M. Dornheim, and C. Pistidda, "Solid state hydrogen storage in alanates and alanatebased compounds: a review", Metals, Vol. 8, No. 8, 2018, pp. 567, doi: https://doi.org/10.3390/met8080567. 
  7. B. Sakintuna, F. LamariDarkrim, and M. Hirscher, "Metal hydride materials for solid hydrogen storage: a review", International Journal of Hydrogen Energy, Vol. 32, No. 9, 2007, pp. 1121-1140, doi: https://doi.org/10.1016/j.ijhydene.2006.11.022. 
  8. M. Fichtner, O. Fuhr, and O. Kircher, "Magnesium alanate-a material for reversible hydrogen storage?", Journal of Alloys and Compounds, Vol. 356357, 2003, pp. 418-422, doi: https://doi.org/10.1016/S09258388(02)012367. 
  9. J. Block and A. P. Gray, "The thermal decomposition of lithium aluminum hydride", Inorganic Chemistry, Vol. 4, No. 3, 1965, pp. 304-305, doi: https://doi.org/10.1021/ic50025a009. 
  10. B. Bogdanovic and M. Schwickardi, "Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials", Journal of Alloys and Compounds, Vol. 253-254, 1997, pp. 1-9, doi: https://doi.org/10.1016/S0925-8388(96)030496. 
  11. L. Pasquini, E. Callini, E. Piscopiello, A. Montone, M. V. Antisari, and E. Bonetti, "Metal-hydride transformation kinetics in Mg nanoparticles", Applied Physics Letters, Vol. 94, No. 4, 2009, pp. 041918, doi: https://doi.org/10.1063/1.3077186. 
  12. R. W. P. Wagemans, J. H. van Lenthe, P. E. de Jongh, A. J. van Dillen, and K. P. de Jong, "Hydrogen storage in magnesium clusters:  quantum chemical study", Journal of the American Chemical Society, Vol. 127, No. 47, 2005, pp. 16675-16680, doi: https://doi.org/10.1021/ja054569h. 
  13. M. Christiana and K. F. Aguey-Zinsou, "Destabilisation of complex hydrides through size effects", Nanoscale, Vol. 2, No. 12, 2010, pp. 2587-2590, doi: https://doi.org/10.1039/C0NR00418A. 
  14. P. Hohenberg and W. Kohn, "Inhomogeneous electron gas", Physical Review, Vol. 136, No. 3B, 1964, pp. B864-B871, doi: https://doi.org/10.1103/PhysRev.136.B864. 
  15. W. Kohn and L. J. Sham, "Self-consistent equations include-eing exchange and correlation effects", Physical Review, Vol. 140, No. 4A, 1965, pp. A1133-A1138, doi: https://doi.org/10.1103/PhysRev.140.A1133. 
  16. G. Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals", Physical Review B, Vol. 47, No. 1, 1993, pp. 558-561, doi: https://doi.org/10.1103/PhysRevB.47.558. 
  17. G. Kresse, and J. Hafner, "Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium", Physical Review B, Vol. 49, No. 20, 1994, pp. 14251-14269, doi: https://doi.org/10.1103/PhysRevB.49.14251. 
  18. G. Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set", Physical Review B, Vol. 54, No. 16, 1996, pp. 11169-11186, doi: https://doi.org/10.1103/PhysRevB.54.11169. 
  19. G. Kresse and J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set", Computational Materials Science, Vol. 6, No. 1, 1996, pp. 15-50, doi: https://doi.org/10.1016/0927-0256(96)00008-0. 
  20. P. E. Blochl, "Projector augmented-wave method", Physical Review B, Vol. 50, No. 24, 1994, pp. 17953-17979, doi: https://doi.org/10.1103/PhysRevB.50.17953. 
  21. G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method", Physical Review B, Vol. 59, No. 3, 1999, pp. 1758-1775, doi: https://doi.org/10.1103/PhysRevB.59.1758. 
  22. J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy", Physical Review B, Vol. 45, No. 23, 1992, pp. 13244-13249, doi: https://doi.org/10.1103/PhysRevB.45.13244. 
  23. M. Methfessel and A. T. Paxton, "High-precision sampling for Brillouin-zone integration in metals", Physical Review B, Vol. 40, No. 6, 1989, pp. 3616-3621, doi: https://doi.org/10.1103/PhysRevB.40.3616. 
  24. T. Mueller and G. Ceder, "Effect of particle size on hydrogen release from sodium alanate nanoparticles", Acs Nano, Vol. 4, No. 10, 2010, pp. 5647-5656, doi: https://doi.org/10.1021/nn101224j. 
  25. M. Palumbo, F. J. Torres, J. R. Ares, C. Pisani, J. F. Fernandez, and M. Baricco, "Thermodynamic and ab initio investigation of the A1-H-Mg system", Calphad, Vol. 31, No. 4, 2007, pp. 457-467, doi: https://doi.org/10.1016/j.calphad.2007.04.005. 
  26. Y. Kim, E. K. Lee, J. H. Shim, Y. W. Cho, and K. B. Yoon, "Mechanochemical synthesis and thermal decomposition of Mg (AlH4)2", Journal of Alloys and Compounds, Vol. 422, No. 1-2, 2006, pp. 283-287, doi: https://doi.org/10.1016/j.jallcom.2005.11.063. 
  27. R. A. Varin, C. Chiu, T. Czujko, and Z. Wronski, "Mechanochemical activation synthesis (MCAS) of nanocrystalline magnesium alanate hydride [Mg(AlH4)2] and its hydrogen desorption properties", Journal of Alloys and Compounds, Vol. 439, No. 1-2, 2007, pp. 302-311, doi: https://doi.org/10.1016/j.jallcom.2006.08.080. 
  28. T. N. Dymova, N. N. Mal'tseva, V. N. Konoplev, A. I. Golovanova, D. P. Aleksandrov, and A. S. Sizareva, "Solid-phase solvate-free formation of magnesium hydroaluminates Mg(AlH4)2 and MgAlH5 upon mechanochemical activation or heating of magnesium hydride and aluminum chloride mixtures", Russian Journal of Coordination Chemistry, Vol. 29, 2003, pp. 385-389, doi: https://doi.org/10.1023/A:1024025925617. 
  29. P. Canton, M. Fichtner, C. Frommen, and A. Leon, "Synchrotron X-ray studies of ti-doped NaAlH4", The Journal of Physical Chemistry B, Vol. 110, No. 7, 2006, pp. 3051-3054, doi: https://doi.org/10.1021/jp0538565. 
  30. A. W. McClaine, K. Brown, and D. D. G. Bowen, "Magnesium hydride slurry: a better answer to hydrogen storage", Journal of Energy Resources Technology, Vol. 137, No. 6, 2015, pp. 061201, doi: https://doi.org/10.1115/1.4030398.