DOI QR코드

DOI QR Code

PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교

The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst

  • 이기성 (광주과학기술원 융합기술원 에너지융합대학원) ;
  • 정현승 (광주과학기술원 융합기술원 에너지융합대학원) ;
  • 현진호 (광주과학기술원 융합기술원 에너지융합대학원) ;
  • 박찬호 (광주과학기술원 융합기술원 에너지융합대학원)
  • GISEONG LEE (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • HYEON SEUNG JUNG (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • JINHO HYUN (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • CHANHO PAK (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
  • 투고 : 2022.12.28
  • 심사 : 2023.04.05
  • 발행 : 2023.04.28

초록

Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.

키워드

과제정보

본 논문은 현대자동차의 연구개발과제에서 일부 지원을 받아 수행된 연구 결과입니다.

참고문헌

  1. K. M. Kang, D. M. Kim, J. S. Choi, I. S. Cha, and Y. H. Yun, "Surface coating and corrosion characteristics of bipolar plates of PEMFC application", Journal of Hydrogen and New Energy, Vol. 22, No. 2, 2011, pp. 199-205, doi: https://doi.org/10.7316/khnes.2011.22.2.199. 
  2. H. Kim, S. Hong, and T. Hur, "Environmental life cycle assessment (LCA) of polymer electrolyte membrane fuel cell (PEMFC) system", Journal of Hydrogen and New Energy, Vol. 29, No. 1, 2018, pp. 111-116, doi: https://doi.org/10.7316/KHNES.2018.29.1.111. 
  3. R. Stropnik, N. Mlakar, A. Lotric, M. Sekavcnik, and M. Mori, "The influence of degradation effects in proton exchange membrane fuel cells on life cycle assessment modelling and environmental impact indicators", International Journal of Hydrogen Energy, Vol. 47, No. 57, 2022, pp. 24223-24241, doi: https://doi.org/10.1016/j.ijhydene.2022.04.011. 
  4. B. K. Kho, I. H. Oh, S. A. Hong, and H. Y. Ha, "The effect of pretreatment methods on the performance of passive DMFCs", Electrochimica Acta, Vol. 50, No. 23, 2004, pp. 781-785, doi: https://doi.org/10.1016/j.electacta.2004.01.107. 
  5. F. N. Khatib, T. Wilberforce, O. Ijaodola, E. Ogungbemi, Z. El-Hassan, A. Durrant, J. Thompson, and A. G. Olabi, "Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review", Renewable and Sustainable Energy Reviews, Vol. 111, 2019, pp. 114, doi: https://doi.org/10.1016/j.rser.2019.05.007. 
  6. P. Ren, P. Pei, Y. Li, Z. Wu, D. Chen, S. Huang, and X. Jia, "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance", Applied Energy, Vol. 239, 2019, pp. 785-792, doi: https://doi.org/10.1016/j.apenergy.2019.01.235. 
  7. N. Zamel and X. Li "Effect of contaminants on polymer electrolyte membrane fuel cells", Progress in Energy and Combustion Science, Vol. 37, No. 3, 2011, pp. 292-329, doi: https://doi.org/10.1016/j.pecs.2010.06.003. 
  8. K. Christmann, K. A. Friedrich, and N. Zamel, "Activation mechanisms in the catalyst coated membrane of PEM fuel cells", Progress in Energy and Combustion Science, Vol. 85, 2021, pp. 100924, doi: https://doi.org/10.1016/j.pecs.2021.100924. 
  9. S. Kabir, D. J. Myers, N. Kariuki, J. Park, G. Wang, A. Baker, N. Macauley, R. Mukundan, K. L. More, and K. C. Neyerlin, "Elucidating the dynamic nature of fuel cell electrodes as a function of conditioning: an ex situ material characterization and in situ electrochemical diagnostic study", ACS Applied Materials & Interfaces, Vol. 11, No. 48, 2019, pp. 45016-45030, doi: https://doi.org/10.1021/acsami.9b11365. 
  10. M. Zhiani, I. Mohammadi, and S. Majidi, "Membrane electrode assembly steaming as a novel preconditioning procedure in proton exchange membrane fuel cell", International Journal of Hydrogen Energy, Vol. 42, No. 7, 2017, pp. 4490-4500, doi: https://doi.org/10.1016/j.ijhydene.2017.01.103. 
  11. N. Zamel, "The catalyst layer and its dimensionality - A look into its ingredients and how to characterize their effects", Journal of Power Sources, Vol. 309, 2016, pp. 141-159, doi: https://doi.org/10.1016/j.jpowsour.2016.01.091. 
  12. Z. B. Wang, P. J. Zuo, X. P. Wang, J. Lou, B. Q. Yang, and G. P. Yin, "Studies of performance decay of Pt/C catalysts with working time of proton exchange membrane fuel cell", Journal of Power Sources, Vol. 184, No. 1, 2008, pp. 245-250, doi: https://doi.org/10.1016/j.jpowsour.2008.06.037. 
  13. P. Pei, X. Fu, Z. Zhu, P. Ren, and D. Chen, "Activation of polymer electrolyte membrane fuel cells: mechanisms, procedures, and evaluation", International Journal of Hydrogen Energy, Vol. 47, No. 59, 2022, pp. 24897-24915, doi: https://doi.org/10.1016/j.ijhydene.2022.05.228. 
  14. S. S. Kocha and B. G. Pollet, "Advances in rapid and effective break-in/conditioning/recovery of automotive PEMFC stacks", Current Opinion in Electrochemistry, Vol. 31, 2022, pp. 100843, doi: https://doi.org/10.1016/j.coelec.2021.100843. 
  15. E. Balogun, A. O. Barnett, and S. Holdcroft, "Cathode starvation as an accelerated conditioning procedure for perfluorosulfonic acid ionomer fuel cells", Journal of Power Sources Advances, Vol. 3, 2020, pp. 100012, doi: https://doi.org/10.1016/j.powera.2020.100012. 
  16. G. A. Cohen, D. Gelman, and Y. Tsur, "Development of a typical distribution function of relaxation times model for polymer electrolyte membrane fuel cells and quantifying the resistance to proton conduction within the catalyst layer", The Journal of Physical Chemistry C, Vol. 125, No. 22, 2021, pp. 11867-11874, doi: https://doi.org/10.1021/acs.jpcc.1c03667. 
  17. A. Weiss, S. Schindler, S. Galbiati, M. A. Danzer, and R. Zeis, "Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra", Electrochimica Acta, Vol. 230, 2017, pp. 391-398, doi: https://doi.org/10.1016/j.electacta.2017.02.011. 
  18. J. H. Kwon, P. Choi, S. Jo, H. Oh, K. Y. Cho, Y. K. Lee, S. Kim, and K. S. Eom, "Identification of electrode degradation by carbon corrosion in polymer electrolyte membrane fuel cells using the distribution of relaxation time analysis", Electrochimica Acta, Vol. 414, 2022, pp. 140219, doi: https://doi.org/10.1016/j.electacta.2022.140219. 
  19. J. Li, H. Wu, L. Cao, X. He, B. Shi, Y. Li, M. Xu, and Z. Jiang, "Enhanced proton conductivity of sulfonated polysulfone membranes under low humidity via the incorporation of multifunctional graphene oxide", ACS Applied Nano Materials, Vol. 2, No. 8, 2019, pp. 4734-4743, doi: https://doi.org/10.1021/acsanm.9b00446. 
  20. T. J. Peckham, J. Schmeisser, M. Rodgers, and S. Holdcroft, "Mainchain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity", Journal of Materials Chemistry, Vol. 17, No. 30, 2007, pp. 3255-3268, doi: https://doi.org/10.1039/B702339A. 
  21. O. S. Ijaodola, Z. ElHassan, E. Ogungbemi, F. N. Khatib, T. Wilberforce, J. Thompson, and A. G. Olabi, "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)", Energy, Vol. 179, 2019, pp. 246-267, doi: https://doi.org/10.1016/j.energy.2019.04.074. 
  22. M. Zhiani, S. Majidi, and M. M. Taghiabadi, "Comparative study of on-line membrane electrode assembly activation procedures in proton exchange membrane fuel cell", Fuel Cells, Vol. 13, No. 5, 2013, pp. 946-955, doi: https://doi.org/10.1002/fuce.201200139. 
  23. M. Zhiani and S. Majidi, "Effect of MEA conditioning on PEMFC performance and EIS response under steady state condition", International Journal of Hydrogen Energy, Vol. 38, No. 23, 2013, pp. 9819-9825, doi: https://doi.org/10.1016/j.ijhydene.2013.05.072. 
  24. M. M. Taghiabadi, M. Zhiani, and V. Silva, "Effect of MEA activation method on the long-term performance of PEM fuel cell", Applied Energy, Vol. 242, 2019, pp. 602-611, doi: https://doi.org/10.1016/j.apenergy.2019.03.157. 
  25. L. Wang, Z. Zeng, C. Ma, Y. Liu, M. Giroux, M. Chi, J. Jin, J. Greeley, and C. Wang, "Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts", Nano Letters, Vol. 17, No. 6, 2017, pp. 3391-3395, doi: https://doi.org/10.1021/acs.nanolett.7b00046. 
  26. X. Yang, J. Sun, G. Jiang, S. Sun, Z. Shao, H. Yu, F. Duan, and Y. Yang, "Experimental study on critical membrane water content of proton exchange membrane fuel cells for cold storage at -50℃", Energies, Vol. 14, No. 15, 2021, pp. 4520, doi: https://doi.org/10.3390/en14154520. 
  27. J. W. Lim, Y. H. Cho, M. Ahn, D. Y. Chung, Y. H. Cho, N. Jung, Y. S. Kang, O. H. Kim, M. J. Lee, M. Kim, and Y. E. Sung, "Ionic resistance of a cathode catalyst layer with various thicknesses by electrochemical impedance spectroscopy for PEMFC", Journal of The Electrochemical Society, Vol. 159, No. 4, 2021, pp. B378, doi: https://doi.org/10.1149/2.030204jes. 
  28. S. Guan, F. Zhou, J. Tan, and M. Pan, "Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs", Progress in Natural Science: Materials International, Vol. 30, No. 6, 2020, pp. 839-845, doi: https://doi.org/10.1016/j.pnsc.2020.08.017. 
  29. H. Wang, R. Wang, S. Sui, T. Sun, Y. Yan, and S. Du, "Cathode design for proton exchange membrane fuel cells in automotive applications", Automotive Innovation, Vol. 4, 2021, pp. 144-164, doi: https://doi.org/10.1007/s421540-210-0148-y. 
  30. M. Heinzmann, A. Weber, and E. Ivers-Tiffee, "Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times", Journal of Power Sources, Vol. 402, 2018, pp. 24-33, doi: https://doi.org/10.1016/j.jpowsour.2018.09.004. 
  31. A. Kulikovsky, "Characterization of a commercial polymer electrolyte membrane fuel cell stack by means of physics-based modeling and distribution of relaxation times", The Journal of Physical Chemistry C, Vol. 126, No. 5, 2022, pp. 2424-2429, doi: https://doi.org/10.1021/acs.jpcc.1c10334. 
  32. D. D. Macdonald, "Reflections on the history of electrochemical impedance spectroscopy", Electrochimica Acta, Vol. 51, No. 8-9, 2006, pp. 1376-1388, doi: https://doi.org/10.1016/j.electacta.2005.02.107.